Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 165: 107473, 2023 10.
Article in English | MEDLINE | ID: mdl-37690288

ABSTRACT

BACKGROUND: Synchrotron radiation computed tomography (SR-CT) holds promise for high-resolution in vivo imaging. Notably, the reconstruction of SR-CT images necessitates a large set of data to be captured with sufficient photons from multiple angles, resulting in high radiation dose received by the object. Reducing the number of projections and/or photon flux is a straightforward means to lessen the radiation dose, however, compromises data completeness, thus introducing noises and artifacts. Deep learning (DL)-based supervised methods effectively denoise and remove artifacts, but they heavily depend on high-quality paired data acquired at high doses. Although algorithms exist for training without high-quality references, they struggle to effectively eliminate persistent artifacts present in real-world data. METHODS: This work presents a novel low-dose imaging strategy namely Sparse2Noise, which combines the reconstruction data from paired sparse-view CT scan (normal-flux) and full-view CT scan (low-flux) using a convolutional neural network (CNN). Sparse2Noise does not require high-quality reconstructed data as references and allows for fresh training on data with very small size. Sparse2Noise was evaluated by both simulated and experimental data. RESULTS: Sparse2Noise effectively reduces noise and ring artifacts while maintaining high image quality, outperforming state-of-the-art image denoising methods at same dose levels. Furthermore, Sparse2Noise produces impressive high image quality for ex vivo rat hindlimb imaging with the acceptable low radiation dose (i.e., 0.5 Gy with the isotropic voxel size of 26 µm). CONCLUSIONS: This work represents a significant advance towards in vivo SR-CT imaging. It is noteworthy that Sparse2Noise can also be used for denoising in conventional CT and/or phase-contrast CT.


Subject(s)
Synchrotrons , Tomography, X-Ray Computed , Animals , Rats , Photons , Algorithms , Artifacts
2.
J Synchrotron Radiat ; 30(Pt 2): 417-429, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36891855

ABSTRACT

Visualization of low-density tissue scaffolds made from hydrogels is important yet challenging in tissue engineering and regenerative medicine (TERM). For this, synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT) has great potential, but is limited due to the ring artifacts commonly observed in SR-PBI-CT images. To address this issue, this study focuses on the integration of SR-PBI-CT and helical acquisition mode (i.e. SR-PBI-HCT) to visualize hydrogel scaffolds. The influence of key imaging parameters on the image quality of hydrogel scaffolds was investigated, including the helical pitch (p), photon energy (E) and the number of acquisition projections per rotation/revolution (Np), and, on this basis, those parameters were optimized to improve image quality and to reduce noise level and artifacts. The results illustrate that SR-PBI-HCT imaging shows impressive advantages in avoiding ring artifacts with p = 1.5, E = 30 keV and Np = 500 for the visualization of hydrogel scaffolds in vitro. Furthermore, the results also demonstrate that hydrogel scaffolds can be visualized using SR-PBI-HCT with good contrast while at a low radiation dose, i.e. 342 mGy (voxel size of 26 µm, suitable for in vivo imaging). This paper presents a systematic study on hydrogel scaffold imaging using SR-PBI-HCT and the results reveal that SR-PBI-HCT is a powerful tool for visualizing and characterizing low-density scaffolds with a high image quality in vitro. This work represents a significant advance toward the non-invasive in vivo visualization and characterization of hydrogel scaffolds at a suitable radiation dose.


Subject(s)
Synchrotrons , Tissue Scaffolds , Tomography, X-Ray Computed/methods , Tissue Engineering/methods , Hydrogels
3.
Tissue Eng Part C Methods ; 27(11): 573-588, 2021 11.
Article in English | MEDLINE | ID: mdl-34670397

ABSTRACT

Distinguishing from other traditional imaging, synchrotron radiation microcomputed tomography (SR-µCT) imaging allows for the visualization of three-dimensional objects of interest in a nondestructive and/or in situ way with better spatial resolution, deep penetration, relatively fast speed, and/or high contrast. SR-µCT has been illustrated promising for visualizing and characterizing tissue scaffolds for repairing or replacing damaged tissue or organs in tissue engineering (TE), which is of particular advance for longitudinal monitoring and tracking the success of scaffolds once implanted in animal models and/or human patients. This article presents a comprehensive review on recent studies of characterization of scaffolds based on SR-µCT and takes scaffold architectural properties, mechanical properties, degradation, swelling and wettability, and biological properties as five separate sections to introduce SR-µCT wide applications. We also discuss and highlight the unique opportunities of SR-µCT in various TE applications; conclude this article with the suggested future research directions, including the prospective applications of SR-µCT, along with its challenges and methods for improvement in the field of TE.


Subject(s)
Synchrotrons , Tissue Scaffolds , Humans , X-Ray Microtomography
4.
Inorg Chem ; 58(11): 7285-7294, 2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31090408

ABSTRACT

Two-dimensional (2D) material-controllable degradation under light radiation is crucial for their photonics and medical-related applications, which are yet to be investigated. In this paper, we first report the laser illumination method to regulate the degradation rate of Ti3C2T x nanosheets in aqueous solution. Comprehensive characterization of intermediates and final products confirmed that plasmonic laser promoting the oxidation was strikingly different from heating the aqueous solution homogeneously. Laser illumination would nearly 10 times accelerate the degradation of Ti3C2T x nanosheets in initial stage and create many smaller-sized oxidized products in a short time. Laser-induced fast degradation was principally ascribed to surface plasmonic resonance effect of Ti3C2T x nanosheets. The degradation ability of such illumination could be controlled either by tuning the excitation wavelength or changing the excitation power. Furthermore, the laser- or thermal-induced degradation could be retarded by surface protection of Ti3C2T x nanosheets. Our results suggest that plasmonic electron excitation of Ti3C2T x nanosheets could build a new reaction channel and lead to the fast oxidation of nanosheets in aqueous solution, potentially enabling a series of water-based applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...