Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 37(13): 3939-3949, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33775091

ABSTRACT

The adsorption of two zwitterionic surfactants, dodecyldimethylammonium propanesulfonate (C12PS) and dodecyldimethylammonium carboxybetaine (C12CB), and of their mixtures with the cationic dodecyltrimethylammonium bromide (C12TAB) and the anionic sodium dodecylsulfate (SDS) at the silica-water interface has been studied by neutron reflection (NR). The total adsorption, the composition of the adsorbed layer, and some structural information have been obtained over a range of concentrations from below the critical micelle concentration (CMC) to about 30× the mixed CMC. The adsorption behavior has been considered in relation to the previously measured micellar equilibrium of these mixtures in their bulk solutions and their adsorption at the air-water interface. C12CB adsorbs cooperatively close to its CMC to form an almost complete bilayer on its own, whereas C12PS adsorbs more weakly in a fragmented bilayer structure. Although SDS does not normally adsorb at the silica-water interface, SDS adsorbs strongly and cooperatively with C12PS at fractional SDS compositions up to about 0.5. This cooperativity is lost when the adsorbed fraction of SDS rises above about 0.5. At this point, adsorption drops sharply, creating an unusual maximum in the variation of adsorption with a total concentration above the mixed CMC. Neither the increase in cooperativity nor the subsequent decline in adsorption results directly from variations of the independently determined monomer concentrations in the bulk solution. The adsorption maximum is predominantly the effect of strong cooperative interaction, possibly accompanied by partial segregation of SDS within the layer, followed by charge repulsion from the surface. Although the solution aggregation and adsorption at the A-W interface are similar for SDS with C12CB, the addition of SDS to C12CB at the silica-water interface promotes the opposite behavior to that of SDS with C12PS, and SDS simply disrupts the cooperative binding of C12CB. Unlike SDS, the cationic surfactant C12TAB adsorbs on silica. It therefore coadsorbs at the SiO2-W interface with either C12CB or C12PS. However, in neither case is there any pronounced cooperativity and, even though the presence of C12TAB might be expected to favor adsorption, the adsorption is generally unexpectedly low.

2.
Langmuir ; 32(14): 3340-7, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27010322

ABSTRACT

The structures of layers of three different dodecylcarboxybetaine surfactants adsorbed at the air-water interface have been determined by neutron reflection. The zwitterionic compounds differed in the length of the spacer separating the quaternary ammonium and carboxylate groups, which was (CH2)1, (CH2)4, or (CH2)8. The limiting area per molecule was found to be 45, 52, or 84 Å(2), respectively, and compared reasonably with results from surface tension showing that the Gibbs prefactor is 1 in each case. Isotopic labeling was used to distinguish between the position of the alkyl and spacer groups in the layer. The spacer was found to be well-immersed in water for the (CH2)1 and (CH2)4 spacers but significantly above water for the (CH2)8 spacer. The distribution of the (CH2)8 spacer along the surface normal was found to be similar to that of the dodecyl group; i.e., it projects out of the water, contrary to an earlier hypothesis that it forms a loop. Comparison of the overlap of water with dodecyl and spacer groups also indicates that the (CH2)8 spacer is well out of the water. This in turn suggests that the anionic carboxylic acid group, which is dissociated in solution, is not ionized in the adsorbed layer. A further observation is that the dodecylcarboxybetaine with the (CH2)8 spacer reaches surface saturation at one-tenth of the critical micelle concentration. This is highly unusual and is attributed to the long spacer destabilizing the micelle relative to the surface layer.


Subject(s)
Betaine/analogs & derivatives , Betaine/chemistry , Fatty Acids/chemistry , Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/chemistry , Adsorption , Betaine/chemical synthesis , Deuterium , Fatty Acids/chemical synthesis , Neutron Diffraction , Quaternary Ammonium Compounds/chemical synthesis , Surface Tension , Surface-Active Agents/chemical synthesis
3.
Langmuir ; 30(23): 6739-47, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24853780

ABSTRACT

Neutron reflection (NR) and surface tension (ST) are used to show that there are serious limitations in applying the Gibbs equation accurately to ST data of cationic surfactants to obtain the limiting surface excess, Γ(CMC), at the critical micelle concentration (CMC). Nonionic impurities in C12TABr and C16TABr have been eliminated by extensive purification to give ST - ln(concentration) (σ - ln c) curves that are convex with respect to the ln c axis around the CMC, which is characteristic of a finite micellization width. Because NR shows that the surface excess often continues to increase at and above the CMC, this finite width makes it impossible to apply the Gibbs equation to obtain Γ(CMC) without knowledge of the effect of aggregation on the activity. NR data made it possible to apply the integrated Gibbs equation to the ST below the onset of the convex region of the σ - ln c curve and show that for C12TABr the micellization width causes the ST to underestimate Γ(CMC) by 12%. Hexadecyltrimethylammonium (C16TA) sulfate is used to show that divalent ion impurities are not a significant problem. For cationic surfactants, further errors are associated with ST methods that rely on complete wetting. Measurements using ring, plate, and bubble shape analyses indicate that with ring and plate incomplete wetting occurs at or above the CMC and may extend to lower concentrations and also causes the ST-Gibbs analysis to underestimate the surface excess. In combination with ion association and preaggregation in cationic gemini surfactants, this can cause errors as large as 100% in Γ(CMC). Comparison of ellipsometry and NR for C16TAX in 0.1 M KX (X = F or Cl) shows that ellipsometry cannot, as yet, be quantitatively modeled accurately enough for surface excess determination independent of NR calibration.

4.
Langmuir ; 29(30): 9335-51, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23819862

ABSTRACT

This is a second paper responding to recent papers by Menger et al. and the ensuing discussion about the application of the Gibbs equation to surface tension (ST) data. Using new neutron reflection (NR) measurements on sodium dodecylsulfate (SDS) and sodium dodecylmonooxyethylene sulfate (SLES) above and below their CMCs and with and without added NaCl, in conjunction with the previous ST measurements on SDS by Elworthy and Mysels (EM), we conclude that (i) ST measurements are often seriously compromised by traces of divalent ions, (ii) adsorption does not generally reach saturation at the CMC, making it difficult to obtain the limiting Gibbs slope, and (iii) the significant width of micellization may make it impossible to apply the Gibbs equation in a significant range of concentration below the CMC. Menger et al. proposed ii as a reason for the difficulty of applying the Gibbs equation to ST data. Conclusions i and iii now further emphasize the failings of the ST-Gibbs analysis for determining the limiting coverage at the CMC, especially for SDS. For SDS, adsorption increases above the CMC to a value of 10 × CMC, which is about 25% greater than at the CMC and about the same as at the CMC in the presence of 0.1 M NaCl. In contrast, the adsorption of SLES reaches a limit at the CMC with no further increase up to 10 × CMC, but the addition of 0.1 M NaCl increases the surface excess by 20-25%. The results for SDS are combined with earlier NR results to generate an adsorption isotherm from 2 to 100 mM. The NR results for SDS are compared to the definitive surface tension (ST) measurements of EM, and the surface excesses agree over the range where they can safely be compared, from 2 to 6 mM. This confirms that the anomalous decrease in the slope of EM's σ - ln c curve between 6 mM and the CMC at 8.2 mM results from changes in activity associated with a significant width of micellization. This anomaly shows that it is impossible to apply the Gibbs equation usefully from 6 to 8.2 mM (i.e., the lack of knowledge of the activity in this range is the same as above the CMC (8.2 mM)). It was found that a mislabeling of the original data in EM may have prevented the use of this excellent ST data as a standard by other authors. Although NR and ST results for SDS in the absence of added electrolyte show that the discrepancies can be rationalized, ST is generally shown to be less accurate and more vulnerable to impurities, especially divalent ions, than NR. The radiotracer technique is shown to be less accurate than ST-Gibbs in that the four radiotracer measurements of the surface excess are consistent neither with each other nor with ST and NR. It is also shown that radiotracer results on aerosol-OT are likely to be incorrect. Application of the mass action (MA) model of micellization to the ST curves of SDS and SLES through and above the CMC shows that they can be explained by this model and that they depend on the degree of dissociation of the micelle, which leads to a larger change in the mean activity, and hence the adsorption, for the more highly dissociated SDS micelles than for SLES. Previous measurements of the activity of SDS above the CMC were found to be semiquantitatively consistent with the change in mean activity predicted by the MA model but inconsistent with the combined ST, NR, and Gibbs equation results.

5.
Langmuir ; 29(30): 9324-34, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23758191

ABSTRACT

Four recent papers by Menger et al. have questioned methods of analysis of surface tension (ST) data that use the Gibbs equation to obtain the surface excess (Γ) of a surfactant at the air-water interface. There have been two responses which challenge the assertions of Menger et al. and a response from Menger et al. We use directly determined values of Γ from a range of neutron reflectometry (NR) data to examine some of the issues that are relevant to these seven papers. We show that there is excellent agreement between NR measurements and careful ST analyses for a wide range of nonionic adsorbents, including surfactants and polymers. The reason it is possible to obtain good agreement near the critical micelle concentration (CMC) is that nonionic surfactants generally seem to saturate the surface before the CMC is reached and this makes it relatively easy to determine the limiting slope (and hence Γ) of the ST-log(concentration) plot at the CMC. Furthermore, there is also generally good agreement between ST and NR over the whole range of concentrations below the CMC until depletion effects become important. Depletion effects are shown to become important at higher concentrations than expected, which brings them into the range of many experiments, including techniques other than ST and NR. This is illustrated with new measurements on the biosurfactant surfactin. The agreement between ST and NR outside the depletion range can be regarded as a mutual validation of the two methods, especially as it is demonstrated independently of any model adsorption isotherms. In the normal experimental situation NR is less vulnerable to depletion than ST and we show how NR and a single ST measurement can be used to determine the hitherto undetermined CMC of the nonionic surfactant C18E12, which is found to be 1.3 × 10(-6) M.

6.
Langmuir ; 28(1): 327-38, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22098149

ABSTRACT

The properties and phase diagrams of aqueous mixtures of dodecyltrimethylammonium bromide (C(12)TAB) with the sodium oligoarene sulphonates (POSn), POS2, POS3, POS4, and POS6 have been studied using surface tension and neutron reflectometry to study the surface, and neutron small angle scattering and fluorescence to study the bulk solution. The behavior of POS2 and POS3 is reasonably consistent with mixed micelles of C(12)TAB and POSn-(C(12)TA)(n). These systems exhibit a single critical micelle concentration (CMC) at which the surface tension reaches the usual plateau. This is contrary to a recent report which suggests that the onset of the surface tension plateau does not coincide with the CMC. In the POS3 system, the micelles conform to the core-shell model, are slightly ellipsoidal, and have aggregation numbers in the range 70-100. In addition, the dissociation constant for ionization of the micelles is significantly lower than for free C(12)TAB micelles, indicating binding of the POS3 ion to the micelles. Estimation of the CMCs of the POSn-(C(12)TA)(n) from n = 1-3 assuming ideal mixing of the two component surfactants and the observed values of the mixed CMC gives values that are consistent with the nearest related gemini surfactant. The POS4 and POS6 systems are different. They both phase separate slowly to form a dilute and a concentrated (dense) phase. Fluorescence of POS4 has been used to show that the onset of aggregation of surfactant (critical aggregation concentration, CAC) occurs at the onset of the surface tension plateau and that, at the slightly higher concentration of the phase separation, the concentration of POS4 and C(12)TAB in the dilute phase is at or below its concentration at the CAC, that is, this is a clear case of complex coacervation. The surface layer of the C(12)TA ion in the surface tension plateau region, studied directly by neutron reflectometry, was found to be higher than a simple monolayer (observed for POS2 and POS3) for both the POS4 and POS6 systems. In POS6 this evolved after a few hours to a structure consisting of a monolayer with an attached subsurface bilayer, closely resembling that observed for one class of polyelectrolyte/surfactant mixtures. It is suggested that this structured layer, which must be present on the surface of the dilute phase of the coacervated system, is a thin wetting film of the dense phase. The close resemblance of the properties of the POS6 system to that of one large group of polyelectrolyte/surfactant mixtures shows that the surface behavior of oligoion/surfactant mixtures can quickly become representative of that of true polyelectrolyte/surfactant mixtures. In addition, the more precise characterization possible for the POS6 system identifies an unusual feature of the surface behavior of some polyelectrolyte/surfactant systems and that is that the surface tension can remain low and constant through a precipitation/coacervation region because of the characteristics of two phase wetting. The well-defined fixed charge distribution in POS6 also suggests that rigidity and charge separation are the factors that control whether a given system will exhibit a flat surface tension plateau or the alternative of a peak on the surface tension plateau.

7.
Langmuir ; 27(6): 2575-86, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21284391

ABSTRACT

We have measured the structure and properties of a series of dicationic quaternary ammonium compounds α,ω-bis(N-alkyl dimethyl ammonium)hexane halides (Cn-C6-Cn) for values of the alkyl chain length n of 8, 9, 10, 11, 12, and 16, and a series of α,ω-bis(N-alkyl dimethyl ammonium)diethylether halides (Cn-C2OC2-Cn) for values of n of 8, 12, and 16, as well as C8-C12-C8 and C12-C10-C12 at the air/water interface. Although the critical micelle concentration (CMC) in the two series decreases in the normal way, that is, logarithmically, with increasing chain length, the limiting surface tension at the CMC and the limiting area per molecule both increase with chain length, in the opposite direction from comparable single chain surfactants. The structures of the surface layers, which were determined by neutron reflectometry, indicate that the anomalous behavior of the surface tension and area are probably caused by poor packing of the gemini side chains between adjacent molecules. Comparison of the directly determined surface coverage using neutron reflectometry and the apparent coverage determined by application of the Gibbs equation to surface tension data gives an experimental measurement of the prefactor in the Gibbs equation, which should be 3 for these geminis. It was found to vary from about 3 for the two C16 geminis down to about 1.5 for the two C8 geminis. We have devised a simple quantitative model that explains this variation and earlier observations that the Gibbs prefactor for C12-Cn-C12 (n varying from 3 to 12) is around 2. The model is consistent with the conductivity, NMR, and fluorescence measurements of other authors. This model shows that both dimerization and ion association are required to explain the surface tension behavior of cationic gemini bromide surfactants and that, in many cases, the prefactor itself varies with concentration.

8.
Langmuir ; 27(5): 1844-52, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21192685

ABSTRACT

Neutron reflectometry has been used to study the adsorption of two symmetrical cationic (dimethyl ammonium bromide) gemini surfactants with two C(12)H(25) chains and different partially fluorinated spacers at three different surfaces: air/water, hydrophilic silica/water, and hydrophobic (octadecyltricholorosilane (OTS))/water. In addition, the adsorption of purely hydrocarbon geminis with the same side chains and spacers of different lengths has been studied at the same two solid surfaces. The limiting close-packed areas for the two fluorocarbon geminis, C(12)-C(3)fC(6)C(3)-C(12) and C(12)-C(4)fC(4)C(4)-C(12), are 92 and 72 ± 4 at the hydrophilic silica surface, 81 and 89 ± 4 at OTS, and 137 and 106 ± 4 Å(2) at the air/water interface with decreases of 38 and 24% from air/water to the average solid value, respectively. These changes suggest that the packing at the air/water interface is inefficient, and this allows the extra hydrophobicity of the chain environment at the two solid surfaces to promote much more efficient packing. At the air/water interface, the fluorocarbon spacers are on average the fragments furthest away from the underlying water, further out than in the nearest comparable hydrocarbon gemini, C(12)-C(12)-C(12). This is the probable explanation of the much lower value of the area per molecule at the air/water interface of C(12)-C(4)fC(4)C(4)-C(12) compared to that of C(12)-C(12)-C(12). It is also the probable cause of the inefficient packing of the hydrocarbon side chains. At the more hydrophobic OTS surface the situation is reversed and the fluorocarbon spacers are now the furthest from the hydrophobic surface, further out than the spacer in C(12)-C(12)-C(12). This is an unusually large structural change that must be associated with the greatly improved packing at the OTS surface. The efficiency of the packing is also high for the hydrophilic surface, no doubt because the hydrocarbon chains can interact favorably in the adsorbed bilayer core. The values of the area per molecule obtained for the series of hydrocarbon geminis at the air/water, OTS/water and silica/water interfaces are respectively 139, 104, and 98 ± 4 Å(2) for C(12)-C(12)-C(12), 114, 106, and 94 ± 4 Å(2) for C(12)-C(10)-C(12), 104, 84, and 85 ± 4 Å(2) for C(12)-C(6)-C(12), and 78, 66, and 70 ± 3 Å(2) for C(12)-C(3)-C(12). The area per molecule is also about 20% less on average at the two solid surfaces than at the air/water interface. This can also be attributed to more efficient packing caused by the more favorable hydrophobic interactions possible at these two surfaces than at the air/water interface, again showing that the packing at the air/water interface is inefficient and probably resulting from the competition between spacer and chains, which will be most pronounced for the C(12) spacer.

9.
Langmuir ; 27(2): 656-64, 2011 Jan 18.
Article in English | MEDLINE | ID: mdl-21166453

ABSTRACT

The adsorption of six symmetrical cationic (dimethylammonium bromide) gemini surfactants with four different partially fluorinated chains at three different surfaces--the air/water, the hydrophilic silica/water, and the hydrophobic (octadecyltricholorosilane (OTS))/water--has been investigated by neutron reflectometry. The corresponding single chain trimethylammonium bromides have also been studied at the two solid surfaces. Four of the geminis with a C(6) spacer and chains with differing amounts of fluorocarbon have identical limiting areas per molecule at the air/water interface (106 ± 5 Å(2)). This is similar to the value for the corresponding hydrocarbon gemini with a C(6) spacer and C(12) side chains, but unlike the hydrocarbon gemini, it is significantly more than twice the area per molecule of the corresponding single chain cationic. In adsorbed aggregates on hydrophilic silica the area per molecule decreases from the air/water value by an average of about 25%, indicating a substantial improvement in the packing of these geminis in the aggregate, which can be attributed to the stronger interaction between the hydrophobic chains in the interior of the aggregates. On the hydrophobic OTS surface the area per molecule in the adsorbed monolayer for three partially fluorinated geminis decreased by about 15% from the air/water value, again indicating much more favorable packing next to the hydrophobic OTS, but for one of the geminis, fC(8)C(6)-C(6)-C(6)fC(8), the change in area was reversed. This reversal is accompanied by a marked thinning of the layer, which is attributed to a shift in the balance between the interactions of the hydrocarbon spacer and fluorocarbon chain fragments and the OTS surface.


Subject(s)
Calcitriol/analogs & derivatives , Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/chemistry , Adsorption , Air , Calcitriol/chemical synthesis , Calcitriol/chemistry , Molecular Structure , Neutron Diffraction , Quaternary Ammonium Compounds/chemical synthesis , Silicon Dioxide/chemistry , Surface Properties , Surface-Active Agents/chemical synthesis , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...