Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Biomed Pharmacother ; 153: 113344, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35780620

ABSTRACT

Betahistine and gastrodin are the first-line medications for vestibular disorders in clinical practice, nevertheless, their amelioration effects on vestibular dysfunctions still lack direct comparison and their unexpected extra-vestibular effects remain elusive. Recent clinical studies have indicated that both of them may have effects on the gastrointestinal (GI) tract. Therefore, we purposed to systematically compare both vestibular and GI effects induced by betahistine and gastrodin and tried to elucidate the mechanisms underlying their GI effects. Our results showed that betahistine and gastrodin indeed had similar therapeutic effects on vestibular-associated motor dysfunction induced by unilateral labyrinthectomy. However, betahistine reduced total GI motility with gastric hypomotility and colonic hypermotility, whereas gastrodin did not influence total GI motility with only slight colonic hypermotility. In addition, betahistine, at normal dosages, induced a slight injury of gastric mucosa. These GI effects may be due to the different effects of betahistine and gastrodin on substance P and vasoactive intestinal peptide secretion in stomach and/or colon, and agonistic/anatgonistic effects of betahistine on histamine H1 and H3 receptors expressed in GI mucosal cells and H3 receptors distributed on nerves within the myenteric and submucosal plexuses. Furthermore, treatment of betahistine and gastrodin had potential effects on gut microbiota composition, which could lead to changes in host-microbiota homeostasis in turn. These results demonstrate that gastrodin has a consistent improvement effect on vestibular functions compared with betahistine but less effect on GI functions and gut microbiota, suggesting that gastrodin may be more suitable for vestibular disease patients with GI dysfunction.


Subject(s)
Receptors, Histamine H3 , Vestibule, Labyrinth , Animals , Benzyl Alcohols , Betahistine/pharmacology , Betahistine/therapeutic use , Glucosides , Mice , Receptors, Histamine H3/metabolism , Vestibular Nuclei/metabolism , Vestibule, Labyrinth/metabolism
2.
Sheng Li Xue Bao ; 74(2): 135-144, 2022 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-35503061

ABSTRACT

Vestibular compensation is an important model for developing the prevention and intervention strategies of vestibular disorders, and investigating the plasticity of the adult central nervous system induced by peripheral injury. Medial vestibular nucleus (MVN) in brainstem is critical center for vestibular compensation. Its neuronal excitability and sensitivity have been implicated in normal function of vestibular system. Previous studies mainly focused on the changes in neuronal excitability of the MVN in lesional side of the rat model of vestibular compensation following the unilateral labyrinthectomy (UL). However, the plasticity of sensitivity of bilateral MVN neurons dynamically responding to input stimuli is still largely unknown. In the present study, by using qPCR, whole-cell patch clamp recording in acute brain slices and behavioral techniques, we observed that 6 h after UL, rats showed a significant deficit in spontaneous locomotion, and a decrease in excitability of type B neurons in the ipsilesional rather than contralesional MVN. By contrast, type B neurons in the contralesional rather than ipsilesional MVN exhibited an increase in response sensitivity to the ramp and step input current stimuli. One week after UL, both the neuronal excitability of the ipsilesional MVN and the neuronal sensitivity of the contralesional MVN recovered to the baseline, accompanied by a compensation of spontaneous locomotion. In addition, the data showed that the small conductance Ca2+-activated K+ (SK) channel involved in the regulation of type B MVN neuronal sensitivity, showed a selective decrease in expression in the contralesional MVN 6 h after UL, and returned to normal level 1 week later. Pharmacological blockage of SK channel in contralateral MVN to inhibit the UL-induced functional plasticity of SK channel significantly delayed the compensation of vestibular motor dysfunction. These results suggest that the changes in plasticity of the ipsilesional MVN neuronal excitability, together with changes in the contralesional MVN neuronal sensitivity, may both contribute to the development of vestibular symptoms as well as vestibular compensation, and SK channel may be an essential ionic mechanism responsible for the dynamic changes of MVN neuronal sensitivity during vestibular compensation.


Subject(s)
Vestibular Nuclei , Vestibule, Labyrinth , Animals , Locomotion , Neurons/physiology , Patch-Clamp Techniques , Rats , Vestibular Nuclei/metabolism
3.
Proc Natl Acad Sci U S A ; 117(50): 32155-32164, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33257584

ABSTRACT

Anxiety commonly co-occurs with obsessive-compulsive disorder (OCD). Both of them are closely related to stress. However, the shared neurobiological substrates and therapeutic targets remain unclear. Here we report an amelioration of both anxiety and OCD via the histamine presynaptic H3 heteroreceptor on glutamatergic afferent terminals from the prelimbic prefrontal cortex (PrL) to the nucleus accumbens (NAc) core, a vital node in the limbic loop. The NAc core receives direct hypothalamic histaminergic projections, and optogenetic activation of hypothalamic NAc core histaminergic afferents selectively suppresses glutamatergic rather than GABAergic synaptic transmission in the NAc core via the H3 receptor and thus produces an anxiolytic effect and improves anxiety- and obsessive-compulsive-like behaviors induced by restraint stress. Although the H3 receptor is expressed in glutamatergic afferent terminals from the PrL, basolateral amygdala (BLA), and ventral hippocampus (vHipp), rather than the thalamus, only the PrL- and not BLA- and vHipp-NAc core glutamatergic pathways among the glutamatergic afferent inputs to the NAc core is responsible for co-occurrence of anxiety- and obsessive-compulsive-like behaviors. Furthermore, activation of the H3 receptor ameliorates anxiety and obsessive-compulsive-like behaviors induced by optogenetic excitation of the PrL-NAc glutamatergic afferents. These results demonstrate a common mechanism regulating anxiety- and obsessive-compulsive-like behaviors and provide insight into the clinical treatment strategy for OCD with comorbid anxiety by targeting the histamine H3 receptor in the NAc core.


Subject(s)
Anxiety Disorders/drug therapy , Histamine Agonists/administration & dosage , Nucleus Accumbens/physiopathology , Obsessive-Compulsive Disorder/drug therapy , Receptors, Histamine H3/metabolism , Afferent Pathways/drug effects , Afferent Pathways/physiopathology , Animals , Anxiety Disorders/etiology , Anxiety Disorders/physiopathology , Anxiety Disorders/psychology , Disease Models, Animal , Glutamates/metabolism , Histamine/metabolism , Histamine H3 Antagonists/administration & dosage , Humans , Hypothalamic Area, Lateral/drug effects , Hypothalamic Area, Lateral/physiopathology , Male , Neurons/drug effects , Neurons/metabolism , Nucleus Accumbens/cytology , Nucleus Accumbens/drug effects , Obsessive-Compulsive Disorder/etiology , Obsessive-Compulsive Disorder/physiopathology , Obsessive-Compulsive Disorder/psychology , Optogenetics , Patch-Clamp Techniques , Prefrontal Cortex/cytology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiopathology , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Rats , Rats, Transgenic , Stereotaxic Techniques , Stress, Psychological/complications , Stress, Psychological/psychology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...