Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 934: 173357, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38772483

ABSTRACT

Submerged macrophytes are integral to the functioning of shallow lakes through their interaction with microorganisms. However, we have a limited understanding of how microbial communities in shallow lakes respond when macrophytes are restored after being historically extirpated. Here, we explored the interactions between prokaryotic communities and carbon utilization in two lakes where submerged macrophytes were restored. We found restoration reduced total carbon in sediment by 8.9 %-27.9 % and total organic carbon by 16.7 %-36.9 % relative to control treatment, but had no effects on carbon content in the overlying water. Sediment microbial communities were more sensitive to restoration than planktonic microbes and showed enhanced utilization of simple carbon substrates, such as Tween 40, after restoration. The increase in carbon utilization was attributed to declines in the relative abundance of some genera, such as Saccharicenans and Desertimonas, which were found weakly associated with the utilization of different carbon substrates. These genera likely competed with microbes with high carbon utilization in restored areas, such as Lubomirskia. Our findings highlight how restoring submerged macrophytes can enhance microbial carbon utilization and provide guidance to improve the carbon sequestration capacity of restored shallow lakes.


Subject(s)
Carbon , Lakes , Microbiota , Lakes/microbiology , Carbon/metabolism , Water Microbiology , Carbon Sequestration , Geologic Sediments/microbiology , Bacteria/metabolism , Environmental Restoration and Remediation/methods
2.
J Hazard Mater ; 473: 134662, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38788574

ABSTRACT

Sediment cadmium contamination poses risks to aquatic ecosystems. Phytoremediation is an environmentally sustainable method to mitigate cadmium contamination. Submerged macrophytes are affected by cadmium stress, but plant growth-promoting rhizobacteria (PGPR) can restore the health status of submerged macrophytes. Herein, we aimed to reduce sediment cadmium concentration and reveal the mechanism by which the combined application of the PGPR Enterobacter ludwigii and the submerged macrophyte Vallisneria natans mitigates cadmium contamination. Sediment cadmium concentration decreased by 21.59% after submerged macrophytes were planted with PGPR, probably because the PGPR colonized the rhizosphere and roots of the macrophytes. The PGPR induced a 5.09-fold increase in submerged macrophyte biomass and enhanced plant antioxidant response to cadmium stress, as demonstrated by decreases in oxidative product levels (reactive oxygen species and malondialdehyde), which corresponded to shift in rhizosphere metabolism, notably in antioxidant defence systems (i.e., the peroxidation of linoleic acid into 9-hydroperoxy-10E,12Z-octadecadienoic acid) and in some amino acid metabolism pathways (i.e., arginine and proline). Additionally, PGPR mineralized carbon in the sediment to promote submerged macrophyte growth. Overall, PGPR mitigated sediment cadmium accumulation via a synergistic plantmicrobe mechanism. This work revealed the mechanism by which PGPR and submerged macrophytes control cadmium concentration in contaminated sediment.


Subject(s)
Biodegradation, Environmental , Cadmium , Enterobacter , Geologic Sediments , Water Pollutants, Chemical , Cadmium/toxicity , Cadmium/metabolism , Enterobacter/metabolism , Enterobacter/growth & development , Enterobacter/drug effects , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Rhizosphere , Hydrocharitaceae/metabolism , Hydrocharitaceae/microbiology , Hydrocharitaceae/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Plant Roots/drug effects , Plant Roots/growth & development , Biomass
3.
Glob Chang Biol ; 29(17): 5044-5061, 2023 09.
Article in English | MEDLINE | ID: mdl-37427534

ABSTRACT

Microbes play an important role in aquatic carbon cycling but we have a limited understanding of their functional responses to changes in temperature across large geographic areas. Here, we explored how microbial communities utilized different carbon substrates and the underlying ecological mechanisms along a space-for-time substitution temperature gradient of future climate change. The gradient included 47 lakes from five major lake regions in China spanning a difference of nearly 15°C in mean annual temperatures (MAT). Our results indicated that lakes from warmer regions generally had lower values of variables related to carbon concentrations and greater carbon utilization than those from colder regions. The greater utilization of carbon substrates under higher temperatures could be attributed to changes in bacterial community composition, with a greater abundance of Cyanobacteria and Actinobacteriota and less Proteobacteria in warmer lake regions. We also found that the core species in microbial networks changed with increasing temperature, from Hydrogenophaga and Rhodobacteraceae, which inhibited the utilization of amino acids and carbohydrates, to the CL500-29-marine-group, which promoted the utilization of all almost carbon substrates. Overall, our findings suggest that temperature can mediate aquatic carbon utilization by changing the interactions between bacteria and individual carbon substrates, and the discovery of core species that affect carbon utilization provides insight into potential carbon sequestration within inland water bodies under future climate warming.


Subject(s)
Cyanobacteria , Lakes , Lakes/microbiology , Temperature , Cyanobacteria/metabolism , Cold Temperature , Carbon/metabolism
4.
Sci Total Environ ; 818: 151711, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34800457

ABSTRACT

The outbreak of COVID-19 has led to the large-scale usage of chlorinated disinfectants in cities. Disinfectants and disinfection by-products (DBPs) enter rivers through urban drainage and surface runoff. We investigated the variations in residual chlorine, DBPs, and different aquatic organisms in the Hanjiang, Fuhe, and Qinglinghe Rivers in Wuhan during the COVID-19 pandemic. The sampling sites were from the wastewater treatment plant outlets to the downstream drinking water treatment plant intakes. Total residual chlorine and DBPs (dichloromethane and trichloromethane) detected in the river water ranged from 0 to 0.84 mg/L and 0 to 0.034 mg/L, respectively. The residual chlorine and DBPs showed a gradual reduction pattern related to water flow, and the concentration at intakes did not exceed the Chinese drinking water source quality standards. Phytoplankton and zooplankton densities were not significantly correlated with residual chlorine and DBPs. The fluctuations in phytoplankton resource use efficiency (RUE) and zooplankton RUE in the Fuhe River, with the highest residual chlorine, and the Qinglinghe River with the highest DBPs, were higher than those in the Hanjiang River. For benthic macroinvertebrates, the number of functional feeding groups in the Hanjiang River was higher than that in the Fuhe and Qinglinghe Rivers. The water and sediment bacterial communities in the Hanjiang River differed significantly from those in the Fuhe and Qingling Rivers. The denitrification function involved in N metabolism was stronger in the Fuhe and Qinglinghe Rivers. Structural equation modelling revealed that residual chlorine and DBPs impacted the diversity of benthos through direct and indirect effects on plankton. Although large-scale chlorine-containing disinfectants use occurred during the investigation, it did not harm the density of the detected aquatic organisms in water sources. With the regular use of chlorinated disinfectants for indoor and outdoor environments in response to the SARS-CoV-2 globally, it is still necessary to study the long-term and accumulated responses of water ecosystems exposed to chlorine-containing disinfectants.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Aquatic Organisms , Chlorine , Cities , Disinfection , Ecosystem , Halogenation , Humans , Pandemics , SARS-CoV-2 , Water Pollutants, Chemical/analysis
5.
Microb Biotechnol ; 14(2): 726-736, 2021 03.
Article in English | MEDLINE | ID: mdl-33507630

ABSTRACT

Sediment organic matter is a key stressor for submerged macrophyte growth, which negatively impacts the ecological restoration of lakes. Plant growth-promoting rhizobacteria (PGPR) were screened from the rhizosphere of submerged macrophytes and used due to their promoting effect on Vallisneria natans under a high sediment organic matter load. Root exudates were used as the sole carbon source to obtain the root affinity strains. Eight isolates were selected from the 61 isolated strains, based on the P solubilization, IAA production, cytokinins production and ACC deaminase activity. The analysis of the 16S rDNA indicated that one strain was Staphylococcus sp., while the other seven bacterial strains were Bacillus sp. They were all listed in low-risk groups for safety use in agricultural practices. The plant height significantly increased after inoculation with PGPR strains, with the highest rate of increase reaching 96%. This study provides an innovative technique for recovering submerged macrophytes under sediment organic matter stress.


Subject(s)
Hydrocharitaceae , Rhizosphere , Bacteria/genetics , Lakes , Plant Development , Plant Roots , Soil Microbiology
6.
FEMS Microbiol Lett ; 367(24)2020 01 15.
Article in English | MEDLINE | ID: mdl-33296466

ABSTRACT

Hydrophytes are plants that grow in or on water. Their overgrowth adversely affects the ecosystem because of crowding out other aquatic organisms and polluting the environment with plant residue. In principle, cellulolytic bacteria can be used to degrade hydrophyte biomass. We here isolated and characterized four cellulolytic bacterial strains from Lake Donghu sediments (Wuhan, China) that are rich in organic matter and plant residues. The isolates (WDHS-01 to 04) represent Bacillus, Micromonospora and Streptomyces genera. The bacteria exhibited pronounced endoglucanase activities (from 0.022 to 0.064 U mL-1). They did not extensively degrade the emerged plant Canna indica L. However, in an Hydrilla verticillata (submerged plant) degradation medium, strain WDHS-02 exhibited a high degradation rate (54.91%), endoglucanase activity of 0.35 U mL-1 and the conversion rate of cellulose to reducing sugars of 7.15%. Correlation analysis revealed that bacterial endoglucanase activity was significantly correlated with the degradation rate, and acid detergent lignin, ash and cellulose content of the residual H. verticillata powder. In conclusion, the identified bacteria efficiently decomposed submerged plants without the need for acid-base pretreatment. They expand the set of known cellulolytic bacteria and can be used for natural degradation of submerged plants.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/metabolism , Cellulase/metabolism , Geologic Sediments/microbiology , Lakes/microbiology , Plants/microbiology , Plants/metabolism , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...