Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 15(1): 6043, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025845

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer with dismal prognosis due to distant metastasis, even in the early stage. Using RNA sequencing and multiplex immunofluorescence, here we find elevated expression of mixed lineage kinase domain-like pseudo-kinase (MLKL) and enhanced necroptosis pathway in PDAC from early liver metastasis T-stage (T1M1) patients comparing with non-metastatic (T1M0) patients. Mechanistically, MLKL-driven necroptosis recruits macrophages, enhances the tumor CD47 'don't eat me' signal, and induces macrophage extracellular traps (MET) formation for CXCL8 activation. CXCL8 further initiates epithelial-mesenchymal transition (EMT) and upregulates ICAM-1 expression to promote endothelial adhesion. METs also degrades extracellular matrix, that eventually supports PDAC liver metastasis. Meanwhile, targeting necroptosis and CD47 reduces liver metastasis in vivo. Our study thus reveals that necroptosis facilitates PDAC metastasis by evading immune surveillance, and also suggest that CD47 blockade, combined with MLKL inhibitor GW806742X, may be a promising neoadjuvant immunotherapy for overcoming the T1M1 dilemma and reviving the opportunity for radical surgery.


Subject(s)
CD47 Antigen , Carcinoma, Pancreatic Ductal , Epithelial-Mesenchymal Transition , Extracellular Traps , Liver Neoplasms , Macrophages , Necroptosis , Pancreatic Neoplasms , Protein Kinases , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Liver Neoplasms/secondary , Liver Neoplasms/metabolism , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/genetics , Mice , Macrophages/metabolism , Macrophages/immunology , Cell Line, Tumor , CD47 Antigen/metabolism , CD47 Antigen/genetics , Protein Kinases/metabolism , Extracellular Traps/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Male , Signal Transduction , Female , Acrylamides , Sulfonamides
2.
Mol Neurobiol ; 60(9): 5102-5116, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37256428

ABSTRACT

Environmental challenges, specifically chronic stress, have long been associated with neuropsychiatric disorders, including anxiety and depression. Sirtuin-1 (SIRT1) is a NAD+-dependent deacetylase that is widely distributed in the cortex and is involved in stress responses and neuropsychiatric disorders. Nevertheless, how chronic stress modulates the SIRT1 pathway and associated signaling remains unclear. In this study, we first explored the impact of chronic unpredictable mild stress (CUMS) on the SIRT1/PGC1α/SIRT3 pathway, on GABAergic mechanisms, and on mitophagy, autophagy and apoptosis in mice. We also asked whether activation of SIRT1 by resveratrol (RSV) can attenuate CUMS-induced molecular and behavioral alterations. Two-month-old C57/BL6J mice were subjected to three weeks of CUMS and one week of RSV treatment (30 mg/kg; i.p.) during the third week of CUMS. CUMS caused downregulation of the SIRT1/PGC1α/SIRT3 pathway leading to impaired mitochondrial morphology and function. CUMS also resulted in a reduction in numbers of parvalbumin-positive interneurons and increased oxidative stress leading to reduced expression of autophagy- and mitophagy-related proteins. Strikingly, activation of SIRT1 by RSV ameliorated expression of SIRT1/PGC1α/SIRT3, and also improved mitochondrial function, GABAergic mechanisms, mitophagy, autophagy and apoptosis. RSV also rescued CUMS-induced anxiety-like and depressive-like behavior in mice. Our results raise the compelling possibility that RSV treatment might be a viable therapeutic method of blocking stress-induced behavioral alterations.


Subject(s)
Sirtuin 1 , Sirtuin 3 , Mice , Animals , Resveratrol/pharmacology , Sirtuin 1/metabolism , Sirtuin 3/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mitochondria/metabolism , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...