Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Accid Anal Prev ; 154: 106099, 2021 May.
Article in English | MEDLINE | ID: mdl-33770718

ABSTRACT

There are certain situations that automated driving (AD) systems are still unable to handle, preventing the implementation of Level 5 AD. Thus, a transition of control, colloquially known as take-over of the vehicle, is required when the system sends a take-over request (TOR) upon exiting the operational design domain (ODD). An adaptive TOR along with good take-over performance requires adjusting the time budget (TB) to drivers' visual distraction state, adhering to a reliable visual-distraction-based take-over performance model. Based on a number of driving simulator experiments, the percentage of face orientation to distraction area (PFODA) and time to boundary at take-over timing (TTBT) were proposed to accurately evaluate the degree of visual distraction based on merely face orientation under naturalistic non-driving related tasks (NDRTs) and to evaluate take-over performance, respectively. In order to elucidate the safety boundary, this study also proposed an algorithm to set a suitable minimum value of the TTBT. Finally, a multiple regression model was built to describe the relationship among PFODA, TB and TTBT along with a corrected coefficient of determination of 0.748. Based on the model, this study proposed an adaptive TB adjustment method for the take-over system.


Subject(s)
Automobile Driving , Distracted Driving , Accidents, Traffic/prevention & control , Algorithms , Humans , Reaction Time
2.
Sci Rep ; 6: 19187, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26753877

ABSTRACT

In this communication, we present a versatile and controllable strategy for formation of superhydrophobic micro/nano hierarchical Al doped ZnO (AZO) films with a water contact angle (CA) of 170 ± 4°. This strategy involves a two-step layer-by-layer process employing an atomic layer deposition (ALD) technique followed by a hydrothermal method, and the resulting novel AZO surface layer consists of (100) dominant nano-rice-like AZO seed layer (the water CA of 110 ± 4°) covered with micro-peony-like AZO top. The growth mechanisms and superhydrophobic properties of the hierarchical AZO layer are discussed. It is believed that the present route holds promise for future success in the design and development of practical superhydrophobic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...