Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874206

ABSTRACT

BACKGROUND: Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) stand as pivotal diagnostic tools for brain disorders, offering the potential for mutually enriching disease diagnostic perspectives. However, the costs associated with PET scans and the inherent radioactivity have limited the widespread application of PET. Furthermore, it is noteworthy to highlight the promising potential of high-field and ultra-high-field neuroimaging in cognitive neuroscience research and clinical practice. With the enhancement of MRI resolution, a related question arises: can high-resolution MRI improve the quality of PET images? PURPOSE: This study aims to enhance the quality of synthesized PET images by leveraging the superior resolution capabilities provided by high-field and ultra-high-field MRI. METHODS: From a statistical perspective, the joint probability distribution is considered the most direct and fundamental approach for representing the correlation between PET and MRI. In this study, we proposed a novel model, the joint diffusion attention model, namely, the joint diffusion attention model (JDAM), which primarily focuses on learning information about the joint probability distribution. JDAM consists of two primary processes: the diffusion process and the sampling process. During the diffusion process, PET gradually transforms into a Gaussian noise distribution by adding Gaussian noise, while MRI remains fixed. The central objective of the diffusion process is to learn the gradient of the logarithm of the joint probability distribution between MRI and noise PET. The sampling process operates as a predictor-corrector. The predictor initiates a reverse diffusion process, and the corrector applies Langevin dynamics. RESULTS: Experimental results from the publicly available Alzheimer's Disease Neuroimaging Initiative dataset highlight the effectiveness of the proposed model compared to state-of-the-art (SOTA) models such as Pix2pix and CycleGAN. Significantly, synthetic PET images guided by ultra-high-field MRI exhibit marked improvements in signal-to-noise characteristics when contrasted with those generated from high-field MRI data. These results have been endorsed by medical experts, who consider the PET images synthesized through JDAM to possess scientific merit. This endorsement is based on their symmetrical features and precise representation of regions displaying hypometabolism, a hallmark of Alzheimer's disease. CONCLUSIONS: This study establishes the feasibility of generating PET images from MRI. Synthesis of PET by JDAM significantly enhances image quality compared to SOTA models.

2.
Eur J Radiol ; 154: 110422, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35767933

ABSTRACT

Clinical PET/CT examinations rely on CT modality for anatomical localization and attenuation correction of the PET data. However, the use of CT significantly increases the risk of ionizing radiation exposure for patients. We propose a deep learning framework to learn the relationship mapping between attenuation corrected (AC) PET and non-attenuation corrected (NAC) PET images to estimate PET attenuation maps and generate pseudo-CT images for medical observation. In this study, 5760, 1608 and 1351 pairs of transverse PET-CT slices were used as the training, validation, and testing sets, respectively, to implement the proposed framework. A pix2pix model was adopted to predict AC PET images from NAC PET images, which allowed the calculation of PET attenuation maps (µ-maps). The same model was then applied to generate realistic CT images from the calculated µ-maps. The quality of predicted AC PET and CT was assessed using normalized root mean square error (NRMSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and Pearson correlation coefficient (PCC). Relative to true AC PET, the synthetic AC PET achieved superior quantitative performances with 2.20 ± 1.17% NRMSE, 34.03 ± 4.73 dB PSNR, 97.90 ± 1.22% SSIM and 98.45 ± 1.31% PCC. The synthetic CT and synthetic AC PET images were deemed acceptable by radiologists who rated the images, as they provided sufficient anatomical and functional information, respectively. This work demonstrates that the proposed deep learning framework is a promising method in clinical applications, such as radiotherapy and low-dose imaging.


Subject(s)
Deep Learning , Positron Emission Tomography Computed Tomography , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Physical Examination , Positron-Emission Tomography/methods , Signal-To-Noise Ratio
3.
J Magn Reson Imaging ; 49(3): 825-833, 2019 03.
Article in English | MEDLINE | ID: mdl-30260592

ABSTRACT

BACKGROUND: Accurate classification of gliomas is crucial for prescribing therapy and assessing the prognosis of patients. PURPOSE: To develop a radiomics nomogram using multiparametric MRI for predicting glioma grading. STUDY TYPE: Retrospective. POPULATION: This study involved 85 patients (training cohort: n = 56; validation cohort: n = 29) with pathologically confirmed gliomas. FIELD STRENGTH/SEQUENCE: 1.5T MR, containing contrast-enhanced T1 -weighted (CET1 WI), axial T2 -weighted (T2 WI), and apparent diffusion coefficient (ADC) sequences. ASSESSMENT: A region of interest of the tumor was delineated. A total of 652 radiomics features were extracted and were reduced using least absolute shrinkage and selection operator regression. STATISTICAL TESTING: Radiomic signature, participant's age, and gender were analyzed as potential predictors to perform logistic regression analysis and develop a prediction model of glioma grading, and a radiomics nomogram was used to represent this model. The performance of the nomogram was assessed in terms of discrimination, calibration, and clinical value in glioma grading. RESULTS: The radiomic signature was significantly associated with glioma grade (P < 0.001) in both the training and validation cohorts. The performance of the radiomics nomogram derived from three MRI sequences (with C-index of 0.971 and 0.961 in the training and validation cohorts, respectively) was improved compared to those based on either CET1 WI, T2 WI, or ADC alone in glioma grading (with C-index of 0.914, 0.714, 0.842 in the training cohort, and 0.941, 0.500, 0.730 in the validation cohort). The nomogram derived from three sequences showed good calibration: the calibration curve showed good agreement between the estimated and the actual probability. The decision curve demonstrated that combining three sequences had more favorable clinical predictive value than single sequence imaging. DATA CONCLUSION: We created and assessed a multiparametric MRI-based radiomics nomogram that may help clinicians classify gliomas more accurately. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:825-833.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Multiparametric Magnetic Resonance Imaging , Nomograms , Adult , Calibration , Cohort Studies , Diffusion Magnetic Resonance Imaging , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Pilot Projects , Prognosis , Regression Analysis , Reproducibility of Results , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...