Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Sci ; 11(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38787176

ABSTRACT

Infectious hematopoietic necrosis virus (IHNV) is a serious pathogen that causes great economic loss to the salmon and trout industry. Previous studies showed that IHNV alters the expression patterns of splenic microRNAs (miRNAs) in rainbow trout. Among the differentially expressed miRNAs, miRNA146a-3p was upregulated by IHNV. However, it is unclear how IHNV utilizes miRNA146a-3p to escape the immune response or promote viral replication. The present study suggested that one multiplicity of infection (MOI) of IHNV induced the most significant miR-146a-3p expression at 1 day post infection (dpi). The upregulation of miR-146a-3p by IHNV was due to viral N, P, M, and G proteins and relied on the interferon (IFN) signaling pathway. Further investigation revealed that Wingless-type MMTV integration site family 3a (WNT3a) and G1/S-specific cyclin-D1-like (CCND1) are the target genes of miRNA-146a-3p. The regulation of IHNV infection by miRNA-146a-3p is dependent on WNT3a and CCND1. MiRNA-146a-3p was required for the downregulation of WNT3a and CCND1 by IHNV. Moreover, we also found that WNT3a and CCND1 are novel proteins that induce the type-I IFN response in RTG-2 cells, and both of them could inhibit the replication of IHNV. Therefore, IHNV-induced upregulation of miRNA-146a-3p promotes early viral replication by suppressing the type-I IFN response by targeting WNT3a and CCND1. This work not only reveals the molecular mechanism of miRNA-146a-3p during IHNV infection but also provides new antiviral targets for IHNV.

2.
J Mol Endocrinol ; 54(3): 277-88, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25917834

ABSTRACT

Expression of the G protein subunit Goα has been shown to be prominent in the atria of the rat heart and to be significantly associated with atrial natriuretic factor (ANF)-containing atrial-specific secretory granules by immunocytochemistry. In addition, differential expression profile analysis using oligonucleotide arrays has shown that the Goα isoform 1 (Goα1) is 2.3-fold more abundant in the atria than it is in the ventricles. In the present report, we show protein-protein interaction between Goα and ANF by yeast two-hybrid and by immunoprecipitation. A cardiac conditional Goα knockout model developed for the present study showed a 90% decrease in Goα expression and decreased atrial expression and ANF and brain natriuretic peptides (BNP) content. Expression of chromogranin A, a specific atrial granule core constituent, was not affected. Morphometric assessment of atrial tissue showed a very significant decrease in atrial-specific granule density as well as granule core electron density. Atrial electrical activity was not affected. The results obtained are compatible with the suggestion that Goα plays a role in ANF sorting during intracellular vectorial transport and with the presence of a mechanism that preserves the molar relationship between cellular ANF and BNP stores in the face of the decreased production of these hormones.


Subject(s)
Atrial Natriuretic Factor/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/physiology , Natriuretic Peptide, Brain/metabolism , Animals , Atrial Natriuretic Factor/blood , Atrial Natriuretic Factor/genetics , Gene Expression , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Myocardium/ultrastructure , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/genetics , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...