Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(50): E11847-E11856, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30478045

ABSTRACT

Using a de novo peptide inhibitor, Corza6 (C6), we demonstrate that the human voltage-gated proton channel (hHv1) is the main pathway for H+ efflux that allows capacitation in sperm and permits sustained reactive oxygen species (ROS) production in white blood cells (WBCs). C6 was identified by a phage-display strategy whereby ∼1 million novel peptides were fabricated on an inhibitor cysteine knot (ICK) scaffold and sorting on purified hHv1 protein. Two C6 peptides bind to each dimeric channel, one on the S3-S4 loop of each voltage sensor domain (VSD). Binding is cooperative with an equilibrium affinity (Kd) of ∼1 nM at -50 mV. As expected for a VSD-directed toxin, C6 inhibits by shifting hHv1 activation to more positive voltages, slowing opening and speeding closure, effects that diminish with membrane depolarization.


Subject(s)
Ion Channels/physiology , Leukocytes/metabolism , Sperm Capacitation/physiology , Acrosome Reaction/drug effects , Acrosome Reaction/physiology , Amino Acid Sequence , Binding Sites , HEK293 Cells , Humans , Ion Channels/antagonists & inhibitors , Ion Channels/genetics , Male , Membrane Potentials , Peptide Library , Peptides/chemistry , Peptides/pharmacology , Reactive Oxygen Species/metabolism , Respiratory Burst , Sperm Capacitation/drug effects , Toxins, Biological/chemistry , Toxins, Biological/pharmacology
2.
Proc Natl Acad Sci U S A ; 112(44): E5926-35, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26443860

ABSTRACT

The voltage-gated proton channel Hv1 plays a critical role in the fast proton translocation that underlies a wide range of physiological functions, including the phagocytic respiratory burst, sperm motility, apoptosis, and metastatic cancer. Both voltage activation and proton conduction are carried out by a voltage-sensing domain (VSD) with strong similarity to canonical VSDs in voltage-dependent cation channels and enzymes. We set out to determine the structural properties of membrane-reconstituted human proton channel (hHv1) in its resting conformation using electron paramagnetic resonance spectroscopy together with biochemical and computational methods. We evaluated existing structural templates and generated a spectroscopically constrained model of the hHv1 dimer based on the Ci-VSD structure at resting state. Mapped accessibility data revealed deep water penetration through hHv1, suggesting a highly focused electric field, comprising two turns of helix along the fourth transmembrane segment. This region likely contains the H(+) selectivity filter and the conduction pore. Our 3D model offers plausible explanations for existing electrophysiological and biochemical data, offering an explicit mechanism for voltage activation based on a one-click sliding helix conformational rearrangement.


Subject(s)
Ion Channels/metabolism , Lipid Bilayers , Protons , Amino Acid Sequence , Dimerization , Humans , Ion Channel Gating , Ion Channels/chemistry , Molecular Sequence Data
3.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 9): 2344-55, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25195748

ABSTRACT

X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of D-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Šresolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.


Subject(s)
Crystallography, X-Ray/methods , Molecular Dynamics Simulation , Databases, Protein , Escherichia coli Proteins/chemistry , Periplasmic Binding Proteins/chemistry
4.
Nat Struct Mol Biol ; 21(3): 244-52, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24487958

ABSTRACT

The transduction of transmembrane electric fields into protein motion has an essential role in the generation and propagation of cellular signals. Voltage-sensing domains (VSDs) carry out these functions through reorientations of positive charges in the S4 helix. Here, we determined crystal structures of the Ciona intestinalis VSD (Ci-VSD) in putatively active and resting conformations. S4 undergoes an ~5-Å displacement along its main axis, accompanied by an ~60° rotation. This movement is stabilized by an exchange in countercharge partners in helices S1 and S3 that generates an estimated net charge transfer of ~1 eo. Gating charges move relative to a ''hydrophobic gasket' that electrically divides intra- and extracellular compartments. EPR spectroscopy confirms the limited nature of S4 movement in a membrane environment. These results provide an explicit mechanism for voltage sensing and set the basis for electromechanical coupling in voltage-dependent enzymes and ion channels.


Subject(s)
Ciona intestinalis/chemistry , Protein Structure, Tertiary , Amino Acid Sequence , Animals , Cell Membrane/metabolism , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Electrophysiology , Escherichia coli/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Oocytes/metabolism , Sequence Homology, Amino Acid , Static Electricity , Xenopus laevis/metabolism
5.
Nat Struct Mol Biol ; 21(2): 160-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24413055

ABSTRACT

Voltage-gated ion channels respond to transmembrane electric fields through reorientations of the positively charged S4 helix within the voltage-sensing domain (VSD). Despite a wealth of structural and functional data, the details of this conformational change remain controversial. Recent electrophysiological evidence showed that equilibrium between the resting ('down') and activated ('up') conformations of the KvAP VSD from Aeropyrum pernix can be biased through reconstitution in lipids with or without phosphate groups. We investigated the structural transition between these functional states, using site-directed spin-labeling and EPR spectroscopic methods. Solvent accessibility and interhelical distance determinations suggest that KvAP gates through S4 movements involving an ∼3-Šupward tilt and simultaneous ∼2-Šaxial shift. This motion leads to large accessibly changes in the intracellular water-filled crevice and supports a new model of gating that combines structural rearrangements and electric-field remodeling.


Subject(s)
Aeropyrum/metabolism , Lipids/chemistry , Potassium Channels, Voltage-Gated/chemistry , Lipid Metabolism , Molecular Conformation , Potassium Channels, Voltage-Gated/physiology , Spin Labels
6.
Biochemistry ; 51(41): 8132-42, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-22989304

ABSTRACT

The voltage-sensing domain (VSD) is the common scaffold responsible for the functional behavior of voltage-gated ion channels, voltage sensitive enzymes, and proton channels. Because of the position of the voltage dependence of the available VSD structures, at present, they all represent the activated state of the sensor. Yet in the absence of a consensus resting state structure, the mechanistic details of voltage sensing remain controversial. The voltage dependence of the VSD from Ci-VSP (Ci-VSD) is dramatically right shifted, so that at 0 mV it presumably populates the putative resting state. Appropriate biochemical methods are an essential prerequisite for generating sufficient amounts of Ci-VSD protein for high-resolution structural studies. Here, we present a simple and robust protocol for the expression of eukaryotic Ci-VSD in Escherichia coli at milligram levels. The protein is pure, homogeneous, monodisperse, and well-folded after solubilization in Anzergent 3-14 at the analyzed concentration (~0.3 mg/mL). Ci-VSD can be reconstituted into liposomes of various compositions, and initial site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopic measurements indicate its first transmembrane segment folds into an α-helix, in agreement with the homologous region of other VSDs. On the basis of our results and enhanced relaxation EPR spectroscopy measurement, Ci-VSD reconstitutes essentially randomly in proteoliposomes, precluding straightforward application of transmembrane voltages in combination with spectroscopic methods. Nevertheless, these results represent an initial step that makes the resting state of a VSD accessible to a variety of biophysical and structural approaches, including X-ray crystallography, spectroscopic methods, and electrophysiology in lipid bilayers.


Subject(s)
Ciona intestinalis/enzymology , Ion Channel Gating , Phosphoric Monoester Hydrolases/metabolism , Amino Acid Sequence , Animals , DNA, Complementary , Electron Spin Resonance Spectroscopy , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Molecular Sequence Data , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/isolation & purification , Sequence Homology, Amino Acid , Solubility
7.
Cell ; 142(4): 515-6, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-20723752

ABSTRACT

The mechanism by which voltage-dependent ion channels sense membrane potentials has been the most intensively studied and debated topic in modern ion channel research. In this issue, Xu et al. (2010) provide new insights into the minimal topological and physicochemical features required for voltage sensing.

8.
Cell Mol Biol Lett ; 15(3): 395-405, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20467904

ABSTRACT

Calpains and caspases are ubiquitous cysteine proteases that are associated with a variety of cellular pathways. Calpains are involved in processes such as long term potentiation, cell motility and apoptosis, and have been shown to cleave non-erythroid (brain) alpha- and beta-spectrin and erythroid beta-spectrin. The cleavage of erythroid alpha-spectrin by calpain has not been reported. Caspases play an important role in the initiation and execution of apoptosis, and have been shown to cleave non-erythroid but not erythroid spectrin. We have studied the effect of spectrin fragments on calpain and caspase activities. The erythroid and non-erythroid spectrin fragments used were from the N-terminal region of alpha-spectrin, and C-terminal region of beta-spectrin, both consisting of regions involved in spectrin tetramer formation. We observed that the all spectrin fragments exhibited a concentration-dependent inhibitory effect on calpain, but not caspase activity. It is clear that additional studies are warranted to determine the physiological significance of calpain inhibition by spectrin fragments. Our findings suggest that calpain activity is modulated by the presence of spectrin partial domains at the tetramerization site. It is not clear whether the inhibitory effect is substrate specific or is a general effect. Further studies of this inhibitory effect may lead to the identification and development of new therapeutic agents specifically for calpains, but not for caspases. Proteins/peptides with a coiled coil helical conformation should be studied for potential inhibitory effects on calpain activity.


Subject(s)
Calpain/metabolism , Caspases/metabolism , Spectrin/metabolism , Apoptosis , Calpain/antagonists & inhibitors , Humans , Protein Multimerization , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrin/chemistry , Spectrin/genetics
9.
Biochemistry ; 48(1): 206-15, 2009 Jan 13.
Article in English | MEDLINE | ID: mdl-19072330

ABSTRACT

The N-terminal region of alpha-spectrin is responsible for its association with beta-spectrin in a heterodimer, forming functional tetramers. Non-erythroid alpha-spectrin (alphaII-spectrin) has a significantly higher association affinity for beta-spectrin than the homologous erythroid alpha-spectrin (alphaI-spectrin). We have previously determined the solution structure of the N-terminal region of alphaI-spectrin by NMR methods, but currently no structural information is available for alphaII-spectrin. We have used cysteine scanning, spin labeling electron paramagnetic resonance (EPR), and isothermal titration calorimetry (ITC) methods to study the tetramerization region of alphaII-spectrin. EPR data clearly show that, in alphaII-spectrin, the first nine N-terminal residues were unstructured, followed by an irregular helix (helix C'), frayed at the N-terminal end, but rigid at the C-terminal end, which merges into the putative triple-helical structural domain. The region corresponding to the important unstructured junction region linking helix C' to the first structural domain in alphaI-spectrin was clearly structured. On the basis of the published model for aligning helices A', B', and C', important interactions among residues in helix C' of alphaI- and alphaII-spectrin and helices A' and B' of betaI- and betaII-spectrin are identified, suggesting similar coiled coil helical bundling for spectrin I and II in forming tetramers. The differences in affinity are likely due to the differences in the conformation of the junction regions. Equilibrium dissociation constants of spin-labeled alphaII and betaI complexes from ITC measurements indicate that residues 15, 19, 37, and 40 are functionally important residues in alphaII-spectrin. Interestingly, all four corresponding homologous residues in alphaI-spectrin (residues 24, 28, 46, and 49) have been reported to be clinically significant residues involved in hematological diseases.


Subject(s)
Spectrin/chemistry , Biopolymers , Calorimetry/methods , Electron Spin Resonance Spectroscopy , Models, Molecular , Protein Structure, Secondary , Recombinant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...