Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 110(51): 25856-62, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181232

ABSTRACT

A redox cycle process, in which CH4 and air are periodically brought into contact with a solid oxide packed in a fixed-bed reactor, combined with the water-gas shift (WGS) reaction, is proposed for hydrogen production. The sole oxidant for partial oxidation of methane (POM) is found to be lattice oxygen instead of gaseous oxygen. A perovskite-type LaFeO3 oxide was prepared by a sol-gel method and employed as an oxygen storage material in this process. The results indicate that, under appropriate reaction conditions, methane can be oxidized to CO and H2 by the lattice oxygen of LaFeO3 perovskite oxide with a selectivity higher than 95% and the consumed lattice oxygen can be replenished in a reoxidation procedure by a redox operation. It is suggested that the POM to H2/CO by using the lattice oxygen of the oxygen storage materials instead of gaseous oxygen should be possibly applicable. The LaFeO3 perovskite oxide maintained relatively high catalytic activity and structural stability, while the carbonaceous deposits, which come from the dissociation of CH4 in the pulse reaction, occurred due to the low migration rate of lattice oxygen from the bulk toward the surface. A new dissociation-oxidation mechanism for this POM without gaseous oxygen is proposed based on the transient responses of the products checked at different surface states via both pulse reaction and switch reaction over the LaFeO3 catalyst. In the absence of gaseous-phase oxygen, the rate-determining step of methane conversion is the migration rate of lattice oxygen, but the process can be carried out in optimized cycles. The product distribution for POM over LaFeO3 catalyst in the absence of gaseous oxygen was determined by the concentration of surface oxygen, which is relevant with the migration rate of lattice oxygen from the bulk toward the surface. This process of hydrogen production via selective oxidation of methane by lattice oxygen is better in avoiding the deep oxidation (to CO2) and enhancing the selectivity. Therefore, this new route is superior to general POM in stability (resistance to carbonaceous deposition), safety (effectively avoiding accidental explosion), ease of operation and optimization, and low cost (making use of air not oxygen).

2.
J Phys Chem B ; 110(45): 22525-31, 2006 Nov 16.
Article in English | MEDLINE | ID: mdl-17091997

ABSTRACT

Direct partial oxidation of methane to synthesis gas on AFeO(3) (A = La, Nd, Eu) oxides by a novel sequential redox cyclic reaction in the absence of gaseous oxygen was investigated over a fixed-bed reactor. These oxides were prepared by the sol-gel method and characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. XRD analysis showed that all AFeO(3) (A = La, Nd, Eu) oxides, calcined at 1173 K, are single-phase perovskites. The CH(4)-TPSR/MS and continuous reaction experiments indicated that the AFeO(3) (A = La, Nd, Eu) oxides provide mostly oxygen species, as the sole oxidant originated from lattice oxygen instead of gaseous oxygen, which can oxidize CH(4) to synthesis gas with high selectivity in the absence of gaseous oxygen. In terms of material economics and the amount of oxygen species for synthesis gas formation, the LaFeO(3) sample exhibits the best performance among these tested AFeO(3) oxides for synthesis gas production. The pulse experiments at different temperatures showed that the rate of oxygen migration during the CH(4) reaction with LaFeO(3) is strongly affected by the reaction temperature, and increases with rising temperature, which is favorable to much more CH(4) selective oxidation at high temperature. The two types of oxygen species are identified by experiments of continuous reactions and pulses, and confirmed by XPS. Methane can be converted selectively to synthesis gas by consumption of lattice oxygen, and general carbonaceous deposits on the catalyst surface do not occur under the appropriate reaction conditions by sequential redox cycles. The performance of selective oxidation of CH(4) to synthesis gas can be recovered by reoxidation using gaseous molecular oxygen; the LaFeO(3) oxide maintains relatively high catalytic activity and structural stability in redox atmospheres.

SELECTION OF CITATIONS
SEARCH DETAIL
...