Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 274: 116231, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38503102

ABSTRACT

Deposition of potentially toxic elements (PTEs) in soils due to different types of mining activities has been an increasingly important concern worldwide. Quantitative differences of soil PTEs contamination and related health risk among typical mines remain unclear. Herein, data from 110 coal mines and 168 metal mines across China were analyzed based on 265 published literatures to evaluate pollution characteristics, spatial distribution, and probabilistic health risks of soil PTEs. The results showed that PTE levels in soil from both mine types significantly exceeded background values. The geoaccumulation index (Igeo) revealed metal-mine soil pollution levels exceeded those of coal mines, with average Igeo values for Cd, Hg, As, Pb, Cu, and Zn being 3.02-15.60 times higher. Spearman correlation and redundancy analysis identified natural and anthropogenic factors affecting soil PTE contamination in both mine types. Mining activities posed a significant carcinogenic risk, with metal-mine soils showing a total carcinogenic risk an order of magnitude higher than in coal-mine soils. This study provides policymakers a quantitative foundation for developing differentiated strategies for sustainable remediation and risk-based management of PTEs in typical mining soils.


Subject(s)
Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , Coal/analysis , Environmental Monitoring/methods , Environmental Pollution/analysis , Soil , Risk Assessment/methods , China , Soil Pollutants/analysis , Cadmium/analysis
2.
Sci Total Environ ; 926: 172063, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38552975

ABSTRACT

The long-term accumulation of coal waste on the surface during natural weathering leads to the inevitable migration of heavy metals contained in the coal waste, which increases the likelihood of environmental contamination and health risks. Dissolved organic matter (DOM) and Fe/Al oxides play crucial roles in the transformation and bioavailability of heavy metals. Thus, we analyzed the Fe/Al oxide content and DOM molecular composition in coal waste with different degrees of weathering and explored the influence of DOM chemical diversity and Fe/Al oxides on the potential mobility of heavy metals. Results showed that weathering-driven decrease in Fe oxides (Fed, FeO, and Fep decreased from 82.4, 37.5, and 3.6 mg∙L-1 to 41.3, 24.7, and 2.3 mg∙L-1, respectively) led to decreases in the reducible fractions of V and Cr. The potential environmental risks of more toxic metals of Cd and As, also increased as a result of the residual fractions decreased to 32.6 % and 41.3 %, respectively. Weathering caused an increase in oxygen-to­carbon ratio, double-bond equivalent, modified aromaticity index, nominal oxidation state of carbon, and molecular diversity and a decrease in (m/z)w and (H/C)w, suggesting that the DOM of highly weathered coal waste possessed high unsaturation, aromatic structures, hydrophilicity, and strong oxidative characteristics. Additionally, although VMF and CrMF showed significant negative correlations with O/C ratio, polyphenolic, carbohydrates, and condensed aromatics, pH remained a key environmental factor determining the potential environmental risks of V and Cr by changing the residual fractions. The mobilities of Cd and As were significantly negatively correlated with those of Fe/Al oxides, particularly Fed, FeO, Fep, and Alp. Our findings contribute to the understanding of the impact of weathering on the geochemical cycling of different coal waste components, providing priority options for environmental risk prevention and control in coal mining areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...