Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 287(22): 17942-50, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22474325

ABSTRACT

When mice are subjected to 7-day calorie restriction (40% of normal food intake), body fat disappears, but blood glucose is maintained as long as the animals produce ghrelin, an octanoylated peptide that stimulates growth hormone secretion. Mice can be rendered ghrelin-deficient by knock-out of the gene encoding either ghrelin O-acyltransferase, which attaches the required octanoate, or ghrelin itself. Calorie-restricted, fat-depleted ghrelin O-acyltransferase or ghrelin knock-out mice fail to show the normal increase in growth hormone and become profoundly hypoglycemic when fasted for 18-23 h. Glucose production in Goat(-/-) mice was reduced by 60% when compared with similarly treated WT mice. Plasma lactate and pyruvate were also low. Injection of lactate, pyruvate, alanine, or a fatty acid restored blood glucose in Goat(-/-) mice. Thus, when body fat is reduced by calorie restriction, ghrelin stimulates growth hormone secretion, which allows maintenance of glucose production, even when food intake is eliminated. In humans with anorexia nervosa or kwashiorkor, ghrelin and growth hormone are known to be elevated, just as they are in fat-depleted mice. We suggest that these two hormones prolong survival in starved humans as they do in mice.


Subject(s)
Fatty Acids/pharmacology , Ghrelin/metabolism , Gluconeogenesis , Hypoglycemia/metabolism , Lactic Acid/pharmacology , Starvation , Animals , Ghrelin/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA
2.
Proc Natl Acad Sci U S A ; 107(36): 15868-73, 2010 Sep 07.
Article in English | MEDLINE | ID: mdl-20713709

ABSTRACT

Ghrelin, an octanoylated peptide hormone produced in the stomach, rises dramatically in mouse plasma during chronic severe calorie deprivation, an event that is essential to maintain life. The mechanism for this increase is not understood. Here, we study the control of ghrelin secretion in tissue culture cells derived from mice bearing ghrelinomas induced by a tissue-specific SV40 T-antigen transgene. We found that the ghrelin-secreting cells express high levels of mRNA encoding beta(1)-adrenergic receptors. Addition of norepinephrine or epinephrine to the culture medium stimulated ghrelin secretion, and this effect was blocked by atenolol, a selective beta(1)-adrenergic antagonist. When WT mice were treated with reserpine to deplete adrenergic neurotransmitters from sympathetic neurons, the fasting-induced increase in plasma ghrelin was blocked. Inhibition was also seen following atenolol administration. We conclude that ghrelin secretion during fasting is induced by adrenergic agents released by sympathetic neurons and acting directly on beta(1) receptors on the ghrelin-secreting cells of the stomach.


Subject(s)
Ghrelin/metabolism , Neoplasms, Experimental/metabolism , Receptors, Adrenergic, beta-1/physiology , Animals , Gene Expression Profiling , Mice , Neoplasms, Experimental/pathology , RNA, Messenger/genetics , Rats , Receptors, Adrenergic, beta-1/genetics
3.
Proc Natl Acad Sci U S A ; 107(16): 7467-72, 2010 Apr 20.
Article in English | MEDLINE | ID: mdl-20231469

ABSTRACT

Ghrelin O-acyltransferase (GOAT) attaches octanoate to proghrelin, which is processed to ghrelin, an octanoylated peptide hormone that stimulates release of growth hormone (GH) from pituitary cells. Elimination of the gene encoding ghrelin or its receptor produces only mild phenotypes in mice. Thus, the essential function of ghrelin is obscure. Here, we eliminate the Goat gene in mice, thereby eliminating all octanoylated ghrelin from blood. On normal or high fat diets, Goat(-/-) mice grew and maintained the same weights as wild-type (WT) littermates. When subjected to 60% calorie restriction, WT and Goat(-/-) mice both lost 30% of body weight and 75% of body fat within 4 days. In both lines, fasting blood glucose initially declined equally. After 4 days, glucose stabilized in WT mice at 58-76 mg/dL. In Goat(-/-) mice, glucose continued to decline, reaching 12-36 mg/dL on day 7. At this point, WT mice showed normal physical activity, whereas Goat(-/-) mice were moribund. GH rose progressively in calorie-restricted WT mice and less in Goat(-/-) mice. Infusion of either ghrelin or GH normalized blood glucose in Goat(-/-) mice and prevented death. Thus, an essential function of ghrelin in mice is elevation of GH levels during severe calorie restriction, thereby preserving blood glucose and preventing death.


Subject(s)
Acyltransferases/physiology , Growth Hormone/metabolism , Adipose Tissue/metabolism , Animal Feed , Animals , Blood Glucose/metabolism , Body Weight , Caloric Restriction , Hypoglycemia/genetics , Membrane Proteins , Mice , Mice, Knockout , Phenotype , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...