Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.080
Filter
1.
Plant Dis ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831591

ABSTRACT

Recently, blackleg disease has seriously impacted the cultivation and development of Brassica crops. In this study, we conducted mapping-based localization of blackleg-resistant candidate genes in Chinese cabbage. Through phenotype evaluation, Chinese cabbage materials 15S414 and 15S420 were selected as blackleg-resistant and blackleg-susceptible parents, respectively. Inheritance pattern analysis suggested that the dominant major genes mainly determined the blackleg resistance of Chinese cabbage. Upon bulked segregation analysis , the blackleg-resistant candidate genes were initially located within a 4.3 Mb interval on chromosome A06. Through construction of the genetic linkage map, blackleg-resistant candidate genes were further limited to a region of 160 kb containing seven resistance-related genes. Coding sequence variation analysis revealed that all seven resistance-related genes displayed various degrees of single nucleotide polymorphism variations between parent materials 15S414 and 15S420.

2.
Nat Commun ; 15(1): 4922, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858434

ABSTRACT

The bidirectional migration of halides and silver causes irreversible chemical corrosion to the electrodes and perovskite layer, affecting long-term operation stability of perovskite solar cells. Here we propose a silver coordination-induced n-doping of [6,6]-phenyl-C61-butyric acid methyl ester strategy to safeguard Ag electrode against corrosion and impede the migration of iodine within the PSCs. Meanwhile, the coordination between DCBP and silver induces n-doping in the PCBM layer, accelerating electron extraction from the perovskite layer. The resultant PSCs demonstrate an efficiency of 26.03% (certified 25.51%) with a minimal non-radiative voltage loss of 126 mV. The PCE of resulting devices retain 95% of their initial value after 2500 h of continuous maximum power point tracking under one-sun irradiation, and > 90% of their initial value even after 1500 h of accelerated aging at 85 °C and 85% relative humidity.

3.
Ann Med ; 56(1): 2346546, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38847883

ABSTRACT

BACKGROUND: Although normal acute phase reactants (APRs) play an important role in assessing disease activity of rheumatoid arthritis (RA), some studies pointed out the discordance between disease activity and APR level. Neutrophil-to-lymphocyte ratios (NLRs), platelet-to-lymphocyte ratios (PLRs) and lymphocyte-to-monocyte ratios (LMRs) have been reported to be sensitive measures of inflammatory reaction. This study aims to explore the value of these haematological makers in assessment of APR-negative RA patients. METHODS: Out of a cohort of 418 consecutive patients with RA, we enrolled 135 patients with normal APR for this study. We performed ultrasound assessments to evaluate synovitis and bone erosion in the affected joints. Synovitis was evaluated by ultrasound grey scale (GS) and power Doppler (PD) with semi-quantitative scoring (0-3). Demographic, clinical and laboratory data were collected from the patients. Disease Activity Score-28 joints (DAS28), NLR, MLR and PLR were calculated. RESULTS: In RA patients with normal APR, PLR exhibited a positive correlation with ultrasound-detected synovitis and bone erosion, whereas NLR, MLR showed no significant correlation with ultrasonography parameters. The area under the ROC curve (AUC) for identifying synovitis with a GS grade ≥2 based on a PLR cutoff value of ≥159.6 was 0.7868 (sensitivity: 80.95%, specificity: 74.24%). For synovitis with a PD grade ≥2, the AUC was 0.7690, using a PLR cutoff value of ≥166.1 (sensitivity: 68.0%, specificity: 83.87%). CONCLUSIONS: Our findings suggested that PLR might be a reliable and cost-effective marker for identifying moderate-to-severe synovitis in RA patients with normal APR.


Subject(s)
Arthritis, Rheumatoid , Biomarkers , Lymphocytes , Synovitis , Humans , Synovitis/diagnostic imaging , Synovitis/blood , Synovitis/diagnosis , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/complications , Female , Male , Middle Aged , Biomarkers/blood , Adult , Blood Platelets , Acute-Phase Proteins/analysis , Aged , Severity of Illness Index , Platelet Count , ROC Curve , Lymphocyte Count , Neutrophils
4.
Diabetes Metab Syndr Obes ; 17: 2165-2176, 2024.
Article in English | MEDLINE | ID: mdl-38827164

ABSTRACT

Purpose: There is evidence that long-term vascular risk remains increased in patients with hyperthyroidism even after normalization of thyroid function, and the mechanisms that regulate this risk are unclear. The aim of this study was to assess how visceral fat area and subcutaneous fat area change after hyperthyroidism treatment, and to further explore the relationship between thyroid hormones, abdominal fat area (visceral fat area and subcutaneous fat area), and lipids. Patients and Methods: 50 patients with newly diagnosed Graves' disease were selected. Anthropometric parameters (weight, height, body mass index, waist circumference, neck circumference), laboratory parameters (thyroid hormones, lipid metabolism indices), abdominal fat area (visceral fat area and subcutaneous fat area), and drug dose were collected. Measurements were made at baseline, 6 and 12 months after treatment. We used linear mixed-effects models for analysis. Results: The results showed that the following indexes changed significantly at different time points: visceral fat area, subcutaneous fat area, free triiodothyronine, free thyroxine, thyroid stimulating hormone, total cholesterol, high-density lipoprotein, low-density lipoprotein, body weight, neck circumference, body mass index, waist circumference, and drug dose (All P<0.001). We found that free triiodothyronine and free thyroxine were significantly negatively associated with abdominal fat area (P<0.01). There was no significant correlation between drug dose and abdominal fat area (P>0.05). Total cholesterol and low-density lipoprotein were significantly positively associated with abdominal fat area (P<0.01). However, high-density lipoprotein (P=0.06) was not correlated with abdominal fat area. Moreover, the results showed a significant negative correlation between thyroid hormones and lipids (P<0.001). Conclusion: After anti-thyroid medicine treatment, patients had elevated visceral fat area and subcutaneous fat area and altered lipid profiles. These changes may be one of the reasons why metabolic and cardiovascular diseases remain increased after thyroid function is restored.

5.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766064

ABSTRACT

Alzheimer's disease (AD) leads to progressive neurodegeneration and dementia. AD primarily affects older adults with neuropathological changes including amyloid-beta (Aß) deposition, neuroinflammation, and neurodegeneration. We have previously demonstrated that systemic treatment with stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) (SCF+G-CSF), reduces Aß load, increases Aß uptake by activated microglia and monocytes/macrophages (Mo/Mac), reduces neuroinflammation, and restores dendrites and synapses in the brains of aged APPswe/PS1dE9 (APP/PS1) mice. However, the mechanisms underlying SCF+G-CSF-enhanced brain repair in aged APP/PS1 mice remain unclear. This study used a transcriptomic approach to explore the mechanisms by which SCF+G-CSF treatment alters the functions of microglia and Mo/Mac in the brains of 28-month-old APP/PS1 mice. After 5-day injections of SCF+G-CSF, single-cell RNA sequencing was performed on CD11b + microglia and Mo/Mac isolated from the brain. Flow cytometry was used for identifying CD11b + microglia and Mo/Mac in the brain. Both transcriptional profiling and flow cytometry data demonstrated dramatic increases in the population of Mo/Mac in the brain following SCF+G-CSF treatment. SCF+G-CSF treatment robustly increased the transcription of genes implicated in activated immune cells, including gene sets that regulate inflammatory processes and cell migration. SCF+G-CSF treatment also increased a cell population co-expressing microglial and Mo/Mac marker genes. This cell cluster aligned with a disease-associated microglial profile linked with Aß restriction and phagocytosis. S100a8 and S100a9 were the most robustly enhanced genes in both microglial and Mo/Mac clusters following SCF+G-CSF treatment. Furthermore, the topmost genes differentially expressed after SCF+G-CSF treatment were largely upregulated in S100a8/9-positive microglia and Mo/Mac, suggesting a largely well-conserved transcriptional profile related to SCF+G-CSF treatment in cerebral immune cells. This S100a8/9-associated transcriptional profile contained genes related to pro- and anti-inflammatory responses, neuroprotection, and Aß plaque inhibition or clearance. This study sheds new light on the cellular and molecular mechanisms of SCF+G-CSF-mitigated AD neuropathology in the aged brain.

6.
Orthop Surg ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766813

ABSTRACT

OBJECTIVE: For elderly femoral neck fracture patients, anemia is one of the most common complications, increasing the risk of postoperative adverse events. Tranexamic acid (TXA) has been widely applied to the perioperative blood management. However, the optimal route of TXA administration in elderly femoral neck fracture remains unclear. The aim of this study is to evaluate the efficacy and safety of oral and intravenous (IV) application of TXA in elderly patients with femoral neck fracture undergoing total hip arthroplasty (THA) and hemiarthroplasty (HA). METHODS: All elderly patients aged over 65 years old diagnosed with femoral neck fracture admitted to the trauma orthopedics from August 1, 2020 to February 28, 2022 were enrolled in this prospective cohort study. Participants were divided into three groups: oral group: TXA 2g orally 2 h before incision; IV group: intravenous infusion of TXA 1g 15 min before incision; and control group: usual hemostatic method. The primary outcomes were total blood loss, allogeneic transfusion rate, and postoperative thromboembolic events. SPSS 23.0 (IBM, Armonk, NY, USA) was used for statistical analysis, and p ≤ 0.05 was considered statistically significant. RESULTS: A total of 100 patients were enrolled, including 32 cases in the oral group, 34 cases in the IV group and 34 cases in the control group. Compared with the control group, the total perioperative blood loss in the oral and IV groups was significantly decreased (763.92 ± 358.64 mL vs 744.62 ± 306.88 mL vs 1250.60 ± 563.37 mL, p = 0.048). No significant difference was identified between the oral and IV groups (p = 0.970). The rate of allogeneic transfusion was lower in the oral and IV groups than in the control group, but the difference had no statistical significant (6 vs 5 vs 12, p = 0.108), However, subgroup analysis showed that the IV and oral groups in patients who underwent THA have significant lower transfusion rate compared with the control group (1 vs 3 vs 7, p = 0.02). During 6 months follow-up, no thromboembolic events were identified. Two patients (one from the oral group and one from the control group) died of respiratory failure. The cost of blood management from the oral group was significantly lower than IV (p < 0.001) and control groups (p = 0.009). CONCLUSION: Elderly patients with femoral neck fracture undergoing THA can benefit from both IV and oral administration of tranexamic acid. The results of these two administration routes are similar in safety and effectiveness. A similar tendency was observed in patients undergoing HA. Oral TXA is more cost-benefit compared with intravenous applications.

7.
Plant Sci ; 345: 112111, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38734143

ABSTRACT

Cyclic Nucleotide-Gated Channels (CNGCs) serve as Ca2+ permeable cation transport pathways, which are involved in the regulation of various biological functions such as plant cell ion selective permeability, growth and development, responses to biotic and abiotic stresses. At the present study, a total of 31 CNGC genes were identified and bioinformatically analyzed in kenaf. Among these genes, HcCNGC21 characterized to localize at the plasma membrane, with the highest expression levels in leaves, followed by roots. In addition, HcCNGC21 could be significantly induced under salt or drought stress. Virus-induced gene silencing (VIGS) of HcCNGC21 in kenaf caused notable growth inhibition under salt or drought stress, characterized by reductions in plant height, stem diameter, leaf area, root length, root surface area, and root tip number. Meanwhile, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly decreased, accompanied by reduced levels of osmoregulatory substances and total chlorophyll content. However, ROS accumulation and Na+ content increased. The expression of stress-responsive genes, such as HcSOD, HcPOD, HcCAT, HcERF3, HcNAC29, HcP5CS, HcLTP, and HcNCED, was significantly downregulated in these silenced lines. However, under salt or drought stress, the physiological performance and expression of stress-related genes in transgenic Arabidopsis thaliana plants overexpressing HcCNGC21 were diametrically opposite to those of TRV2-HcCNGC21 kenaf line. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that HcCNGC21 interacts with HcAnnexin D1. These findings collectively underscore the positive role of HcCNGC21 in plant resistance to salt and drought stress.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Hibiscus , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Hibiscus/genetics , Hibiscus/physiology , Hibiscus/metabolism , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , Salt Stress/genetics , Stress, Physiological/genetics
8.
Front Med (Lausanne) ; 11: 1383600, 2024.
Article in English | MEDLINE | ID: mdl-38799146

ABSTRACT

Background: Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a minimally invasive technique for biopsy of lung, peri-pulmonary tissue and lymph nodes under real-time ultrasound-guided biopsy. It is used in the diagnosis and/or staging of benign and malignant pulmonary and non-pulmonary diseases. Our study is based on a large sample size, in a diversified population which provides a representative real-world cohort for analysis. Methods: Patients who underwent EBUS-TBNA procedure between September 2019 and August 2022 were included in this retrospective study. For cases diagnosed as benign and unclassified lesions by EBUS-TBNA, the final diagnosis was determined by further invasive surgery or a combination of therapy and clinical follow-up for at least 6 months. Results: A total of 618 patients were included in the study, including 182 females (29.4%) and 436 males (70.6%). The mean age of all patients was 61.9 ± 10.5 years. These patients were successfully punctured by EBUS-TBNA to obtain pathological results. The pathological diagnosis results of EBUS-TBNA were compared with the final clinical diagnosis results as follows: 133 cases (21.5%) of benign lesions and 485 cases (78.5%) of malignant lesions were finally diagnosed. Among them, the pathological diagnosis was obtained by EBUS-TBNA in 546 patients (88.3%) (464 malignant lesions and 82 benign conditions), while EBUS-TBNA was unable to define diagnosis in 72 patients (11.6%). 20/72 non-diagnostic EBUS-TBNA were true negative. The overall diagnostic sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of EBUS-TBNA were 91.3%, 100%, 100%, 27.8%, and 91.6% [95% confidence interval (CI): 89.1-93.6%], respectively. In this study, only one case had active bleeding without serious complications during the EBUS-TBNA procedure. Conclusion: Given its low invasiveness, high diagnostic accuracy, and safety, EBUS-TBNA is worth promoting in thoracic lesions.

9.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798506

ABSTRACT

Monocytes are circulating macrophage precursors and are generated from bone marrow hematopoietic stem cells. In the adults, monocytes continuously replenish cerebral border-associated macrophages under a physiological condition. Monocytes also rapidly infiltrate into the brain in the settings of pathological conditions. The mechanisms of recruiting monocyte-derived macrophages into the brain under pathological conditions have been extensively studied. However, it remains unclear how monocytes enter the brain for renewal of border-associated macrophages under the physiological condition. Using both in vitro and in vivo approaches, this study reveals that the combination of two hematopoietic growth factors, stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF), complementarily and synergistically enhances adhesion of monocytes to cerebral endothelial cells in a dose dependent manner. Cysteine-cysteine chemokine receptor 5 (CCR5) in brain endothelial cells, but not cell adhesion molecules mediating neuroinflammation-related infiltration of monocyte-derived macrophages, modulates the SCF+G-CSF-enhanced monocyte-endothelial cell adhesion. Blocking CCR5 or genetically deleting CCR5 reduces monocyte-endothelial cell adhesion induced by SCF+G-CSF. SCF+G-CSF-enhanced recruitment of bone marrow-derived monocytes/macrophages in cerebral perivascular space is also reduced in adult CCR5 knockout mice. This study demonstrates the contribution of SCF and G-CSF in regulating the entry of monocytes into the adult brain to replenish perivascular macrophages.

10.
Front Microbiol ; 15: 1391855, 2024.
Article in English | MEDLINE | ID: mdl-38784801

ABSTRACT

Introduction: SUMOylation is an important post-translational modification that regulates the expression, localization, and activity of substrate proteins, thereby participating in various important cellular processes such as the cell cycle, cell metabolism, gene transcription, and antiviral activity. However, the function of SUMOylation in phytopathogenic fungi has not yet been adequately explored. Methods: A comprehensive analysis composed of proteomics, affinity pull-down, molecular and cellular approaches was performed to explore the roles of SUMOylation in Cryphonectria parasitica, the fungal pathogen responsible for chestnut blight. Results and discussion: CpSmt3, the gene encoding the SUMO protein CpSmt3 in C. parasitica was identified and characterized. Deletion of the CpSmt3 gene resulted in defects in mycelial growth and hyphal morphology, suppression of sporulation, attenuation of virulence, weakening of stress tolerance, and elevated accumulation of hypovirus dsRNA. The ΔCpSmt3 deletion mutant exhibited an increase in mitochondrial ROS, swollen mitochondria, excess autophagy, and thickened cell walls. About 500 putative SUMO substrate proteins were identified by affinity pull-down, among which many were implicated in the cell cycle, ribosome, translation, and virulence. Proteomics and SUMO substrate analyses further revealed that deletion of CpSmt3 reduced the accumulation of CpRho1, an important protein that is involved in TOR signal transduction. Silencing of CpRho1 resulted in a phenotype similar to that of ΔCpSmt3, while overexpression of CpRho1 could partly rescue some of the prominent defects in ΔCpSmt3. Together, these findings demonstrate that SUMOylation by CpSmt3 is vitally important and provide new insights into the SUMOylation-related regulatory mechanisms in C. parasitica.

11.
Plants (Basel) ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732386

ABSTRACT

Nicosulfuron, an acetolactate synthase (ALS) inhibitor herbicide, is a broad-spectrum and highly effective post-emergence herbicide. Glycosyltransferases (GTs) are widely found in organisms and transfer sugar molecules from donors to acceptors to form glycosides or sugar esters, thereby altering the physicochemical properties of the acceptor molecule, such as participating in detoxification. In this study, nine glycosyltransferases in group D of the apple glycosyltransferase family I were predicted to possibly be involved in the detoxification metabolism of ALS-inhibiting herbicides based on gene chip data published online. In order to confirm this, we analysed whether the expression of the nine glycosyltransferase genes in group D was induced by the previously reported ALS-inhibiting herbicides by real-time PCR (polymerase chain reaction). It was found that the ALS-inhibiting herbicide nicosulfuron significantly increased the expression of the MdUGT73CG22 gene in group D. Further investigation of the mechanism of action revealed that the apple glycosyltransferase MdUGT73CG22 glycosylated and modified nicosulfuron both in vivo and ex vivo to form nicosulfuron glycosides, which were involved in detoxification metabolism. In conclusion, a new glycosyltransferase, MdUGT73CG22, was identified for the first time in this study, which can glycosylate modifications of the ALS-inhibiting herbicide nicosulfuron and may be involved in the detoxification process in plants, which can help to further improve the knowledge of the non-targeted mechanism of herbicides.

12.
iScience ; 27(5): 109616, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38706845

ABSTRACT

Among various electrocatalysts, high-entropy alloys (HEAs) have gained significant attention for their unique properties and excellent catalytic activity in the hydrogen evolution reaction (HER). However, the precise synthesis of HEA catalysts in small sizes remains challenging, which limits further improvement in their catalytic performance. In this study, boron- and nitrogen-doped HEA porous carbon nanofibers (HE-BN/PCNF) with an in situ-grown dendritic structure were successfully prepared, inspired by the germination and growth of tree branches. Furthermore, the dendritic fibers constrained the growth of HEA particles, leading to the synthesis of quantum dot-sized (1.67 nm) HEA particles, which also provide a pathway for designing HEA quantum dots in the future. This work provides design ideas and guiding suggestions for the preparation of borated HEA fibers with different elemental combinations and for the application of dendritic nanofibers in various fields.

13.
Int J Spine Surg ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744484

ABSTRACT

BACKGROUND: There is a lack of consensus on the use of postoperative bracing for lumbar degenerative conditions. Spine surgeons typically determine whether to apply postoperative braces based primarily on clinical experience rather than robust, evidence-based medical data. Thus, the present study sought to assess the impact of postoperative bracing on clinical outcomes, complications, and fusion rates following lumbar fusion surgery in patients with degenerative spinal conditions. METHODS: Only randomized controlled studies published between January 1990 and 20 October 2023 were included in this meta-analysis. The primary outcome measures consisted of pre- and postoperative assessments of the Oswestry Disability Index (ODI) and visual analog scale (VAS) scores. Improvements in VAS and ODI scores were analyzed in the early postoperative period (1 month after operation) and at final follow-up, respectively. The analysis also encompassed fusion rates and complications. RESULTS: Five studies with 362 patients were included in the present meta-analysis. In the early postoperative period, the brace group showed a relatively better improvement in ODI scores compared with the no-brace group (19.47 vs 18.18), although this difference was not statistically significant (P = 0.34). Similarly, during the late postoperative period, the brace group demonstrated a slightly greater improvement in VAS scores in comparison to the no-brace group (4.05 vs 3.84), but this difference did not reach statistical significance (P = 0.30). The complication rate was relatively lower in the brace group compared with the no-brace group (14.9% vs 17.4%), although there was no statistical difference between the 2 groups (P = 0.83). Importantly, there were no substantial differences in fusion rates between patients with or without braces. CONCLUSION: The present meta-analysis revealed that the implementation of a brace following lumbar fusion surgery did not yield substantial differences in terms of postoperative pain relief, functional recovery, complication rates, or fusion rates when compared with cases where no brace was employed. CLINICAL RELEVANCE: This meta-analysis provides valuable insights into the clinical impact of postoperative bracing following lumbar fusion surgery for degenerative spinal conditions.

14.
J Colloid Interface Sci ; 667: 192-198, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38636221

ABSTRACT

Designing and developing cost-effective, high-performance catalysts for hydrogen evolution reaction (HER) is crucial for advancing hydrogen production technology. Tungsten-based sulfides (WSx) exhibit great potential as efficient HER catalysts, however, the activity is limited by the larger energy required for water dissociation under alkaline conditions. Herein, we adopt a top-down strategy to construct heterostructure Co-WS2 nanofiber catalysts. The experimental results and theoretical simulations unveil that the work functions-induced built-in electric field at the interface of Co-WS2 catalysts facilitates the electron transfer from Co to WS2, significantly reducing water dissociation energy and optimizing the Gibbs free energy of the entire reaction step for HER. Besides, the self-supported catalysts of Co-WS2 nanoparticles confining 1D nanofibers exhibit an increased number of active sites. As expected, the heterostructure Co-WS2 catalysts exhibit remarkable HER activity with an overpotential of 113 mV to reach 10 mA cm-2 and stability with 30 h catalyzing at 23 mA cm-2. This work can provide an avenue for designing highly efficient catalysts applicable to the field of energy storage and conversion.

15.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 273-278, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38595244

ABSTRACT

OBJECTIVE: To investigate the rates of low disease activity and clinical remission in patients with systemic lupus erythematosus (SLE) in a real-world setting, and to analyze the related factors of low disease activity and clinical remission. METHODS: One thousand patients with SLE were enrolled from 11 teaching hospitals. Demographic, clinical and laboratory data, as well as treatment regimes were collec-ted by self-completed questionnaire. The rates of low disease activity and remission were calculated based on the lupus low disease activity state (LLDAS) and definitions of remission in SLE (DORIS). Charac-teristics of patients with LLDAS and DORIS were analyzed. Multivariate Logistic regression analysis was used to evaluate the related factors of LLDAS and DORIS remission. RESULTS: 20.7% of patients met the criteria of LLDAS, while 10.4% of patients achieved remission defined by DORIS. Patients who met LLDAS or DORIS remission had significantly higher proportion of patients with high income and longer disease duration, compared with non-remission group. Moreover, the rates of anemia, creatinine elevation, increased erythrocyte sedimentation rate (ESR) and hypoalbuminemia was significantly lower in the LLDAS or DORIS group than in the non-remission group. Patients who received hydroxychloroquine for more than 12 months or immunosuppressant therapy for no less than 6 months earned higher rates of LLDAS and DORIS remission. The results of Logistic regression analysis showed that increased ESR, positive anti-dsDNA antibodies, low level of complement (C3 and C4), proteinuria, low household income were negatively related with LLDAS and DORIS remission. However, hydroxychloroquine usage for longer than 12 months were positively related with LLDAS and DORIS remission. CONCLUSION: LLDAS and DORIS remission of SLE patients remain to be improved. Treatment-to-target strategy and standar-dized application of hydroxychloroquine and immunosuppressants in SLE are recommended.


Subject(s)
Hydroxychloroquine , Lupus Erythematosus, Systemic , Humans , Hydroxychloroquine/therapeutic use , Lupus Erythematosus, Systemic/drug therapy , Immunosuppressive Agents/therapeutic use , Severity of Illness Index
16.
Nat Commun ; 15(1): 3041, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589412

ABSTRACT

Sugarcane is a vital crop with significant economic and industrial value. However, the cultivated sugarcane's ultra-complex genome still needs to be resolved due to its high ploidy and extensive recombination between the two subgenomes. Here, we generate a chromosomal-scale, haplotype-resolved genome assembly for a hybrid sugarcane cultivar ZZ1. This assembly contains 10.4 Gb genomic sequences and 68,509 annotated genes with defined alleles in two sub-genomes distributed in 99 original and 15 recombined chromosomes. RNA-seq data analysis shows that sugar accumulation-associated gene families have been primarily expanded from the ZZSO subgenome. However, genes responding to pokkah boeng disease susceptibility have been derived dominantly from the ZZSS subgenome. The region harboring the possible smut resistance genes has expanded significantly. Among them, the expansion of WAK and FLS2 families is proposed to have occurred during the breeding of ZZ1. Our findings provide insights into the complex genome of hybrid sugarcane cultivars and pave the way for future genomics and molecular breeding studies in sugarcane.


Subject(s)
Saccharum , Saccharum/genetics , Plant Breeding , Genomics , Haplotypes/genetics , Chromosomes
17.
BMC Med Genomics ; 17(1): 96, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650036

ABSTRACT

BACKGROUND: The molecular mechanism of fetal cystic hygroma (CH) is still unclear, and no study has previously reported the transcriptome changes of single cells in CH. In this study, single-cell transcriptome sequencing (scRNA-seq) was used to investigate the characteristics of cell subsets in the lesion tissues of CH patients. METHODS: Lymphoid tissue collected from CH patients and control donors for scRNA-seq analysis. Differentially expressed gene enrichment in major cell subpopulations as well as cell-cell communication were analyzed. At the same time, the expression and interactions of important VEGF signaling pathway molecules were analyzed, and potential transcription factors that could bind to KDR (VEGFR2) were predicted. RESULTS: The results of scRNA-seq showed that fibroblasts accounted for the largest proportion in the lymphatic lesions of CH patients. There was a significant increase in the proportion of lymphatic endothelial cell subsets between the cases and controls. The VEGF signaling pathway is enriched in lymphatic endothelial cells and participates in the regulation of cell-cell communication between lymphatic endothelial cells and other cells. The key regulatory gene KDR in the VEGF signaling pathway is highly expressed in CH patients and interacts with other differentially expressed EDN1, TAGLN, and CLDN5 Finally, we found that STAT1 could bind to the KDR promoter region, which may play an important role in promoting KDR up-regulation. CONCLUSION: Our comprehensive delineation of the cellular composition in tumor tissues of CH patients using single-cell RNA-sequencing identified the enrichment of lymphatic endothelial cells in CH and highlighted the activation of the VEGF signaling pathway in lymphoid endothelial cells as a potential modulator. The molecular and cellular pathogenesis of fetal cystic hygroma (CH) remains largely unknown. This study examined the distribution and gene expression signature of each cell subpopulation and the possible role of VEGF signaling in lymphatic endothelial cells in regulating the progression of CH by single-cell transcriptome sequencing. The enrichment of lymphatic endothelial cells in CH and the activation of the VEGF signaling pathway in lymphatic endothelial cells provide some clues to the pathogenesis of CH from the perspective of cell subpopulations.


Subject(s)
Lymphangioma, Cystic , Single-Cell Analysis , Vascular Endothelial Growth Factor Receptor-2 , Humans , Lymphangioma, Cystic/genetics , Lymphangioma, Cystic/metabolism , Lymphangioma, Cystic/pathology , Female , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Sequence Analysis, RNA , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Transcriptome
18.
BMC Musculoskelet Disord ; 25(1): 322, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654321

ABSTRACT

OBJECTIVE: This study aimed to assess the impact of full endoscopic transforaminal discectomy (FETD) on clinical outcomes and complications in both obese and non-obese patients presenting with lumbar disc herniation (LDH). METHODS: A systematic search of relevant literature was conducted across various primary databases until November 18, 2023. Operative time and hospitalization were evaluated. Clinical outcomes included preoperative and postoperative assessments of the Oswestry Disability Index (ODI) and visual analogue scale (VAS) scores, conducted to delineate improvements at 3 months postoperatively and during the final follow-up, respectively. Complications were also documented. RESULTS: Four retrospective studies meeting inclusion criteria provided a collective cohort of 258 patients. Obese patients undergoing FETD experienced significantly longer operative times compared to non-obese counterparts (P = 0.0003). Conversely, no statistically significant differences (P > 0.05) were observed in hospitalization duration, improvement of VAS for back and leg pain scores at 3 months postoperatively and final follow-up, improvement of ODI at 3 months postoperatively and final follow-up. Furthermore, the overall rate of postoperative complications was higher in the obese group (P = 0.02). The obese group demonstrated a total incidence of complications of 17.17%, notably higher than the lower rate of 9.43% observed in the non-obese group. CONCLUSION: The utilization of FETD for managing LDH in individuals with obesity is associated with prolonged operative times and a higher total complication rate compared to their non-obese counterparts. Nevertheless, it remains a safe and effective surgical intervention for treating herniated lumbar discs in the context of obesity.


Subject(s)
Diskectomy , Endoscopy , Intervertebral Disc Displacement , Lumbar Vertebrae , Obesity , Postoperative Complications , Humans , Intervertebral Disc Displacement/surgery , Obesity/surgery , Obesity/complications , Lumbar Vertebrae/surgery , Treatment Outcome , Endoscopy/methods , Endoscopy/adverse effects , Diskectomy/adverse effects , Diskectomy/methods , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Operative Time , Pain Measurement , Disability Evaluation , Retrospective Studies
19.
Article in English | MEDLINE | ID: mdl-38635119

ABSTRACT

PURPOSE: Currently, the rigid instruments used for laparoscopic radical resection of prostate cancer not only have the risk of damage to tissues, blood vessels, and nerves, but their limited freedom will also cause surgical blind areas. Soft robots are expected to solve these issues due to inherent flexibility, compliance, and safe interaction with tissues and organs. In addition, to achieve high surgical accuracy and provide precise guidance for surgeons, the navigation method should be studied for the soft robot. METHODS: A soft robot system for single-port transvesical radical prostatectomy (STRP) is developed, and a navigation method combining fiber Bragg gratings and electromagnetic tracking is proposed for the soft robot. To validate the soft robot design and the effectiveness of the navigation method, different groups of experiments are conducted. RESULTS: The proposed navigation method can achieve accurate location and shape sensing of the soft manipulator. The experiments show that the maximum tip sensing error is 2.691 mm, which is 5.38 % of the robot length for static configurations, and that the average tip sensing error is 1.966 mm, which corresponds to 3.93 % of the robot length for dynamic scenarios. Additionally, phantom tests demonstrate that the designed soft robot can enter the prostate through navigation guidance in a master-slave control mode and cover the entire prostate space. CONCLUSIONS: The designed soft robot system, due to its soft structure, good flexibility, and accurate navigation, is expected to improve surgical safety and precision, thereby exhibiting significant potential for STRP.

20.
Biomaterials ; 308: 122551, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593710

ABSTRACT

Sarcopenia, a prevalent muscle disease characterized by muscle mass and strength reduction, is associated with impaired skeletal muscle regeneration. However, the influence of the biomechanical properties of sarcopenic skeletal muscle on the efficiency of the myogenic program remains unclear. Herein, we established a mouse model of sarcopenia and observed a reduction in stiffness within the sarcopenic skeletal muscle in vivo. To investigate whether the biomechanical properties of skeletal muscle directly impact the myogenic program, we established an in vitro system to explore the intrinsic mechanism involving matrix stiffness control of myogenic differentiation. Our findings identify the microtubule motor protein, kinesin-1, as a mechano-transduction hub that senses and responds to matrix stiffness, crucial for myogenic differentiation and muscle regeneration. Specifically, kinesin-1 activity is positively regulated by stiff matrices, facilitating its role in transporting mitochondria and enhancing translocation of the glucose transporter GLUT4 to the cell surface for glucose uptake. Conversely, the softer matrices significantly suppress kinesin-1 activity, leading to the accumulation of mitochondria around nuclei and hindering glucose uptake by inhibiting GLUT4 membrane translocation, consequently impairing myogenic differentiation. The insights gained from the in-vitro system highlight the mechano-transduction significance of kinesin-1 motor proteins in myogenic differentiation. Furthermore, our study confirms that enhancing kinesin-1 activity in the sarcopenic mouse model restores satellite cell expansion, myogenic differentiation, and muscle regeneration. Taken together, our findings provide a potential target for improving muscle regeneration in sarcopenia.


Subject(s)
Kinesins , Regeneration , Sarcopenia , Animals , Kinesins/metabolism , Mice , Sarcopenia/metabolism , Sarcopenia/pathology , Muscle, Skeletal/metabolism , Mice, Inbred C57BL , Cell Differentiation , Muscle Development , Male , Glucose Transporter Type 4/metabolism , Extracellular Matrix/metabolism , Mitochondria/metabolism , Biomechanical Phenomena , Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...