Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 11(5): 1090-1099, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36629819

ABSTRACT

Different from common anti-tumor drugs, organoplatinum(II) metallacycles can integrate imaging and other therapeutic capabilities by incorporating corresponding functional donor ligands to enable potential applications in biomedicine. However, most of the emerging therapeutic agents not only show poor solubility and selectivity but also have serious side effects and unsatisfactory efficacy and encounter the tendency to develop drug resistance due to their single treatment model. Herein, an organoplatinum(II) metallacycle (PtM) was designed and synthesized using coordination-driven self-assembly via the combination of a metallic chemotherapy precursor and a reactive oxygen species generating organic precursor. The hydrophobic PtM molecules were encapsulated in the cavity of human heavy chain ferritin (HFn) during the reassembly of HFn to prepare the active targeting nanoagent HFn-PtM for use in chemo-photodynamic combination therapy. The HFn-PtM nanoagents exhibited excellent stability in buffer (pH from 5 to 7.2), alleviating the concern of drug leakage during circulation. A cellular uptake assay indicated that HFn-PtM could efficiently enter specific cells that overexpress the transferrin receptor 1. In vitro and in vivo anti-tumor investigations revealed that HFn-PtM exhibited excellent anti-tumor efficiency with negligible systemic toxicity. This work provides a strategy for the easy construction of multifunctional organoplatinum-based tumor-targeted drugs.


Subject(s)
Antineoplastic Agents , Neoplasms , Photochemotherapy , Humans , Ferritins/chemistry , Photochemotherapy/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Delivery Systems
2.
Chempluschem ; 88(1): e202200423, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36680301

ABSTRACT

Two-dimensional (2D) MXene has aroused wide attention for its excellent physical and chemical properties. The interlayer engineering formed by layer-by-layer stacking of MXene nanosheets can be employed for molecular sieving and water purification by incorporating specific groups onto the exterior surface of MXene. Macrocyclic hosts exhibiting unique structural features and recognition ability can construct smart devices for external stimuli with reversible features between macrocycles and guests. On that basis, macrocyclic hosts can be anchored to MXene to provide numerous insights into their compositions and intercalation states. In this review, the MXene prepared based on macrocyclic hosts from molecular design to applications is highlighted. Various MXenes functionalized with macrocyclic hosts are empowered in functional membrane (including water purification, organic solvent nanofiltration, and electromagnetic shielding), photocatalysis, sensing, and adsorption (interactions with specific guest). Hopefully, this review can bring new inspiration to the design of multifunctional MXene-based materials and improving its practical applications.


Subject(s)
Adsorption
3.
Inorg Chem ; 61(6): 2883-2891, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35108490

ABSTRACT

The development of supramolecular coordination complexes (SCCs) with a bright aggregate state or mechanical-stimuli-responsive luminescence is very significant and challenging. Herein, we report the synthesis of three different supramolecular platinum(II) metallacycles via coordination-driven self-assembly of a diplatinum(II) acceptor and organic donors with a triphenylamine, carbazole, or tetraphenylethylene moiety. The triphenylamine-modified SCC exhibits aggregation-induced emission enhancement (AIEE) but no mechanofluorochromism. The carbazole and tetraphenylethylene-based SCCs exhibit changes in aggregate fluorescence and also exhibit reversible mechanofluorochromism. This work not only reports three rare metallacycles with AIEE, aggregate fluorescence change, or mechanofluorochromic nature but also explores their potential applications in cell imaging and solid-state lighting.

4.
Angew Chem Int Ed Engl ; 61(14): e202200482, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35099850

ABSTRACT

Discharge of antibiotic-containing wastewater causes environmental pollution and threatens biological and human health. An efficient treatment method for this wastewater is urgently required. We prepared inorganic-organic hybrid MXene-pillararene nanosheets with a large lateral size (5-8 µm). The hybrid nanosheets were stacked on supports via vacuum-assisted filtration to prepare membranes with regular parallel slits and an interlayer spacing of 1.36 nm, which were used to purify antibiotic-containing water. Permeance through the membrane increased 100-fold compared with most polymeric and other two-dimensional nanofiltration membranes with similar rejection. This high permeance and rejection was attributed to the large lateral size of the nanosheets, regular interlayer spacing, and electrostatic interaction between the membrane and antibiotics. These membranes will broaden the applications of lamellar materials for the separation of high-value-added drugs in academia and industry.


Subject(s)
Wastewater , Water Purification , Anti-Bacterial Agents , Humans , Membranes, Artificial , Titanium
5.
Inorg Chem ; 60(13): 9387-9393, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33881317

ABSTRACT

Supramolecular coordination complexes with solid-state stimuli-responsive characteristics are highly desirable but are rarely reported. Herein, we describe two coordination-driven self-assembled monoanthracene or dianthracene-based hexagonal metallacycles by subtle structure modification. Notably, the dianthracene-containing hexagon 1 exhibits tricolor mechanochromic and vapochromic characteristics, while the monoanthracene-containing hexagon 4 does not show obvious changes toward mechanical force. Further studies have indicated that changes in hexagon 1, especially the ulterior anthracene of hexagon 1 in the molecular stacking through intermolecular interactions toward external stimuli, are responsible for the above behavioral differences. Furthermore, the present work also demonstrates a novel light-harvesting strategy for achieving high-contrast mechanochromic fluorescence involving solid-state energy transfer from hexagon 1 to an organic carbazole derivant 6 without mechanofluorochromism or tetraphenylethylene derivant 7 exhibiting inconspicuous mechanofluorochromism.

6.
ACS Appl Mater Interfaces ; 13(15): 17372-17379, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33834757

ABSTRACT

The development of organic nanoparticles that fluoresce in the near-infrared, especially in the second near-infrared (NIR-II) window, improves in vivo fluorescence imaging due to deeper penetration and higher spatiotemporal resolution. We report two kinds of NIR-II fluorescent molecules with twisted intramolecular charge-transfer (TICT) and aggregation-induced emission (AIE) characteristics. The virus-like particles (VLPs) of simian virus 40 (SV40) were used as templates to encapsulate the molecules in a well-defined structure (referred to as CH1-SV40 and CH2-SV40). The CH1-SV40 dots exhibited a highly uniform size of 21.5 nm, strong fluorescence, high photostability, and good biocompatibility in vitro and in vivo. Their fluorescence spectrum exhibited a peak at 955 nm, with a tail extending to 1200 nm. Moreover, the CH1-SV40 dots, with a quantum yield of 13.03%, enabled blood vessel imaging and image-guided surgery with a high signal-to-background ratio. Overall, the hybrid nanoparticles represent a new kind of NIR-II AIE nanoprobes for biomedical imaging.


Subject(s)
Biomimetic Materials/chemistry , Infrared Rays , Nanoparticles/chemistry , Optical Imaging/methods , Viruses/chemistry , Capsules , Electron Transport , Materials Testing
7.
Inorg Chem ; 60(1): 431-437, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33320662

ABSTRACT

Supramolecular coordination complexes (SCCs) have emerged as anticancer agents. Tracking the movement of these metallic anticancer agents plays an important role in the field of biomedicines. Herein, we describe a method for tracking the movement of a rhomboidal Pt(II) metallacycle agent using the quantum dots encapsidation in vitro self-assembly system of viral proteins. When incubated with living Vero cells, self-assembly of hybrid viral nanoparticles were employed for simultaneous cell imaging and visual transmission of the Pt(II) metallacycle agent. Considering these results, we believe that the multifunctional biomaterials consisting of a supramolecular coordination complex and quantum dots provide a new alternative for probing of the delivery of Pt(II) metallacycle drugs.


Subject(s)
Coordination Complexes/chemistry , Nanoparticles/chemistry , Organoplatinum Compounds/chemistry , Viral Proteins/analysis , Animals , Chlorocebus aethiops , Molecular Imaging , Molecular Structure , Quantum Dots/chemistry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...