Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Small ; 20(3): e2208135, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37587762

ABSTRACT

High-efficiency electromagnetic (EM) wave (EMW)-absorbing materials have attracted extensive scientific and technical interest. Although identifying the dominant EM loss mechanism in dielectric-loss materials is indispensable, it is challenging due to a complex synergism between dipole/interfacial polarization and conduction loss. Modulation of defects and microstructures can be a possible approach to determine the dominant EM loss mechanism and realize high-efficiency absorption. Herein, 2D reduced graphene oxide (rGO) flakes are integrated into a 3D hollow bowl-like structure, which increases defect sites (i.e., oxygen vacancy and lattice defect) and reduces the stacked thickness of rGO. Despite their lower stacked thicknesses, the hollow rGO bowls with more defects exhibit lower conductivities but higher permittivities. Accompanied by the transformation from 2D flakes to 3D hollow bowls, the dominant EM loss mechanism of rGO transforms from conduction loss to defect-induced polarization. Furthermore, the defect engineering and structural design endow rGO with well-matched impedance and strong EMW-absorbing capacity. A minimum reflection loss of -41.6 dB (1.3 mm) and an effective absorption bandwidth of 4.8 GHz (1.5 mm) is achieved at a filler loading of 5 wt%. This study will provide meaningful insights into the development of materials with superior EMW-absorbing performances via defect engineering and structural design.

2.
Mater Horiz ; 11(2): 468-479, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37965678

ABSTRACT

To cope with sophisticated application scenarios, carbon materials can provide opportunities for integrating multi-functionalities into superior electromagnetic interference (EMI) shielding properties. Nevertheless, carbon materials usually possess high electrical conductivity, which allows them to counteract electromagnetic waves by reflection. Moreover, the identification of factors that dominate the shielding mechanisms has typically been result-oriented, leading to a reliance on a trial-and-error approach for the development of shielding materials. Thus, it is crucial to identify the dominant factors for EMI shielding and elucidate the mechanism underlying the coordination of the balance between reflection and absorption in carbon materials. In this study, we developed a promising and viable approach to create Co@CNTs embedded in carbonized wood (CW) via chemical vapor deposition, producing Co@CNTs/CW foams. The CNTs, densely grown on the CW surface, tightly encapsulated the Co nanoparticles within them. By manipulating the Co content, the defect density and CNT length varied within the Co@CNTs. Through first-principles calculations, these variations substantially influenced the work function, charge density, and dipole moment of the Co@CNTs. Thus, defect-induced and interfacial polarizations were improved, inducing a transformation of the shielding mechanism from reflection to absorption. Regarding the Co@CNTs/CW foams, while high conductivity was essential for achieving satisfactory shielding performance, the enhanced polarization loss dominated the contribution of absorption to the overall shielding effectiveness. Taking advantage of the enhanced polarizations, the Co@CNTs/CW foams exhibited an impressive shielding effectiveness of 42.0 dB, along with an absorptivity of 0.64, which were instrumental in effectively minimizing secondary reflections. Remarkably, these as-prepared foams possessed outstanding hydrophobicity and Joule heating features with a water contact angle of 138° and a saturation temperature of 85.5 °C (2.5 V). Through the stimulation of voltage-driven Joule heating, the absorptivity of Co@CNTs/CW foams can be significantly enhanced to a range of 0.61 to 0.73, irrespective of the Co content. This research would provide a new avenue for designing carbon materials with an absorption-dominated mechanism integrated into EMI shielding performance.

3.
Sheng Wu Gong Cheng Xue Bao ; 39(8): 3290-3301, 2023 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-37622361

ABSTRACT

Salicylate 2-O-ß-d-glucoside (SAG) is a derivative of salicylate in plants. Recent reports showed that SAG could be considered as a potential anti-inflammatory substance due to its anti-inflammatory and analgesic effects, and less irritation compared with salicylic acid and aspirin. The biological method uses renewable resources to produce salicylic acid compounds, which is more environmentally friendly than traditional industry methods. In this study, Escherichia coli Tyr002 was used as the starting strain, and a salicylic acid producing strain of E. coli was constructed by introducing the isochorismate pyruvate lyase gene pchB from Pseudomonas aeruginosa. By regulating the expression of the key genes in the downstream aromatic amino acid metabolic pathways, the titer of salicylic acid reached 1.05 g/L in shake flask fermentation. Subsequently, an exogenous salicylic acid glycosyltransferase was introduced into the salicylic acid producing strain to glycosylate the salicylic acid. The newly engineered strain produced 5.7 g/L SAG in shake flask fermentation. In the subsequent batch fed fermentation in a 5 L fermentation tank, the titer of SAG reached 36.5 g/L, which is the highest titer reported to date. This work provides a new route for biosynthesis of salicylate and its derivatives.


Subject(s)
Escherichia coli , Glucosides , Escherichia coli/genetics , Metabolic Engineering , Salicylic Acid , Pyruvic Acid
4.
Biotechnol Biofuels Bioprod ; 16(1): 92, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37264438

ABSTRACT

BACKGROUND: 2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable pseudoaromatic dicarboxylic acid, represents a promising building block for the manufacture of biodegradable polyesters. Microbial production of PDC has been extensively investigated, but low titers and yields have limited industrial applications. RESULTS: In this study, a multi-step biosynthesis strategy for the microbial production of PDC was demonstrated using engineered Escherichia coli whole-cell biocatalysts. The PDC biosynthetic pathway was first divided into three synthetic modules, namely the 3-dehydroshikimic acid (DHS) module, the protocatechuic acid (PCA) module and the PDC module. Several effective enzymes, including 3-dehydroshikimate dehydratase for the PCA module as well as protocatechuate 4,5-dioxygenase and 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase for the PDC module were isolated and characterized. Then, the highly efficient whole-cell bioconversion systems for producing PCA and PDC were constructed and optimized, respectively. Finally, the efficient multi-step biosynthesis of PDC from glucose was achieved by smoothly integrating the above three biosynthetic modules, resulting in a final titer of 49.18 g/L with an overall 27.2% molar yield, which represented the highest titer for PDC production from glucose reported to date. CONCLUSIONS: This study lays the foundation for the microbial production of PDC, including one-step de novo biosynthesis from glucose as well as the microbial transformation of monoaromatics.

5.
Small ; 18(47): e2203609, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36251790

ABSTRACT

Although transition metal carbides/carbonitrides (MXenes) exhibit immense potential for electromagnetic wave (EMW) absorption, their absorbing ability is hindered by facile stacking and high permittivity. Layer stacking and geometric structures are expected to significantly affect the conductivity and permittivity of MXenes. However, it is still a formidable task to simultaneously regulate layer stacking and microstructure of MXenes to realize high-performance EMW absorption. Herein, a simple and viable strategy using electrostatic adsorption is developed to integrate 2D Ti3 C2 Tx MXene nanosheets into 3D hollow bowl-like structures with tunable layer stacking thickness. Density functional theory calculations indicate an increase in the density of states of the d orbital from the Ti atom near the Fermi level and the generation of additional electrical dipoles in the MXene nanosheets constituting the bowl walls upon reducing the layer stacking thickness. The hollow MXene bowls exhibit a minimum reflection loss (RLmin ) of -53.8 dB at 1.8 mm. The specific absorbing performance, defined as RLmin (dB)/thickness (mm)/filler loading (wt%), exceeds 598 dB mm-1 , far surpassing that of the most current MXene and bowl-like materials reported in the literature. This work can guide future exploration on designing high-performance MXenes with "lightweight" and "thinness" characteristics for superior EMW absorption.

6.
Int J Biol Macromol ; 204: 274-283, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35120942

ABSTRACT

Due to phase heterogeneity in semi-crystalline polymers, accurate determination of gas solubility has been a challenge. In this regard, PLA/CO2 was used as a case study to investigate the parameters governing formation of the rigid amorphous fraction (RAF) and its effect on the gas sorption behavior of the polymer. Six samples with different degrees of RAF were prepared through varying PLA tacticity and thermal history. Then, a gravimetric method involving a magnetic suspension balance and an in-house PVT visualization system was employed to experimentally determine the CO2 solubility at 70 °C under a pressure of 4.5 MPa. Furthermore, a theoretical CO2 solubility was calculated based on the Simha-Somcynski equation of state and was used in conjunction with the two-phase and three-phase models to describe the phase dependency of the gas solubility. The conventional two-phase model that considered the bulk amorphous phase consistently over-approximated the CO2 solubility compared to the measured data. On the other hand, the three-phase model that distinguished the rigid and the mobile amorphous phases well represented the experimental result. The analysis yielded CO2 solubility coefficients of 0.0375 ggas/gpoly for the RAF and 0.0817 ggas/gpoly for the mobile counterpart.


Subject(s)
Carbon Dioxide , Polyesters , Crystallization , Solubility , Thermodynamics
7.
Am J Transl Res ; 10(6): 1762-1772, 2018.
Article in English | MEDLINE | ID: mdl-30018717

ABSTRACT

As a component of collagen II, glycosaminoglycan (GAG) has a relatively close relationship with bone metabolism. GAG and collagen II have been proven to promote connection of the bone trabecular structure. However, the exact mechanism remains unknown. In this study, we aimed to determine the concrete effect and the mechanism of GAG and collagen II on glucocorticoid-induced osteoporosis. We implanted prednisolone pellets subcutaneously in mice to mimic glucocorticoid-induced osteoporosis. GAG was administered intragastrically every day for 60 days. The results demonstrated a protective effect of GAG and collagen II on glucocorticoid-induced osteoporosis. Trabecular number and connection density increased after treatment with GAG and collagen II. We generated bone marrow-derived macrophages to explore the effect of GAG and collagen II on osteoclast differentiation. We collected cell protein and RNA in the presence of macrophage colony-stimulating factor (M-CSF) and receptor activator for nuclear factor-κB ligand (RANKL) and found that GAG and collagen II inhibited the NF-κB and MAPK pathways, thereby down-regulating osteoclast differentiation molecules such as matrix metallopeptidase 9 (MMP 9) and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc-1). Our findings suggest that GAG and collagen II may have therapeutic potential of patients with glucocorticoid-induced osteoporosis in clinical settings.

8.
ACS Appl Mater Interfaces ; 9(24): 20873-20884, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28558470

ABSTRACT

In this study, we fabricated conductive poly(vinylidene fluoride) (PVDF)/carbon composites simply by dispersing multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets into a PVDF solution. The electrical conductivity and the electromagnetic interference (EMI) shielding of the PVDF/carbon composites were increased by increasing the conductive carbon filler amounts. Moreover, we also found that the EMI shielding properties of the PVDF/CNT/graphene composites were higher than those of PVDF/CNT and PVDF/graphene composites. The mean EMI shielding values of PVDF/5 wt %-CNT, PVDF/10 wt %-graphene, and PVDF/CNT/graphene composite films with a thickness of 0.1 mm were 22.41, 18.70, and 27.58 dB, respectively. An analysis of the shielding mechanism showed that the main contribution to the EMI shielding came from the absorption mechanism, and that the EMI shielding could be tuned by controlling the films' thickness. The total shielding of the PVDF/CNT/graphene films increased from 21.90 to 36.46 dB as the thickness was increased from 0.06 mm to 0.25 mm. In particular, the PVDF/carbon composite films, with a thickness of 0.1 mm, achieved the highest specific shielding values of 1 310 dB cm2/g for the PVDF/5 wt %-CNT composite and 1 557 dB cm2/g for the PVDF/CNT/graphene composite, respectively. This was due to the ultrathin thickness. Our study provides the groundwork for an effective way to design flexible, ultrathin conductive polymer composite film for application in miniaturized electronic devices.

9.
Appl Biochem Biotechnol ; 174(4): 1484-1495, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25119550

ABSTRACT

An integrated process of supercritical methanol (SCM) and sodium methoxide catalyst was developed to produce fatty acid methyl esters (FAMEs) via continuous esterification from crude biodiesel. The crude biodiesel with high free fatty acid (FFA) content must be refined to reduce the acid value (AV) for meeting the quality standards. The process parameters were studied by Box-Behnken design (BBD) of response surface methodology (RSM). The experimental results revealed that the AV of crude biodiesel decreased from 18.66 to 0.55 mg KOH g(-1) at the reaction conditions of 350 °C, 0.5 % amount of sodium methoxide catalyst, and 10 MPa. Temperature shows the most significant effect on the esterification, followed by pressure and amount of sodium methoxide catalyst. This integrated process proved to be a potential route to refine the crude biodiesel because of its continuity, high efficiency, and less energy consumption with relatively moderate reaction conditions compared with conventional methods.


Subject(s)
Biofuels , Fatty Acids/chemistry , Methanol/chemistry , Catalysis , Esterification
SELECTION OF CITATIONS
SEARCH DETAIL
...