Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(7): 9826-9835, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33820135

ABSTRACT

We demonstrate the optical trapping of single dielectric nanoparticles in a microfluidic chamber using a coupled T-shaped copper plasmonic nanoantenna for studying light-matter interaction. The nanoantenna is composed of two identical copper elements separated by a 50 nm gap and each element is designed with two nanoblocks. Our nanoantenna inherits three different advantages compared to previous plasmonic nanoantennas, which are usually made of gold. First, copper is a very promising plasmonic material with its very similar optical properties as gold. Second, copper is comparably cheap, which is compatible with industry-standard fabrication processes and has been widely used in microelectronics. Third, the trapping area of tweezers is expanded due to the intrinsic Fabry-Perot cavity with two parallel surfaces. We present finite element method simulations of the near-field distribution and photothermal effects. And we perform Maxwell stress tensor simulations of optical forces exerted on an individual nanoparticle in the vicinity of the nanoantenna. In addition, we examine how the existence of an oxide layer of cupric oxide and the heat sink substrate influence the optical trapping properties of copper nanoantennas. This work demonstrates that the coupled T-shaped copper nanoantennas are a promising means as optical nanotweezers to trap single nanoparticles in solution, opening up a new route for nanophotonic devices in optical information processing and on-chip biological sensing.

2.
Polymers (Basel) ; 11(6)2019 Jun 02.
Article in English | MEDLINE | ID: mdl-31159508

ABSTRACT

Polystyrene-based polyHIPE (polymerized high internal phase emulsion) materials were prepared by the copolymerization of styrene and divinylbenzene in the continuous phase of a HIPE. The resultant polyHIPE materials were found to have an open-cellular morphology and high porosity, and the polyHIPE structure could be well adjusted by varying the water/oil (W/O) ratio and the amount of emulsifier in the HIPE. Cell culture results showed that the resultant polyHIPE materials, which exhibited larger voids and connected windows as well as high porosity, could promote cell proliferation on the 3D scaffold. A 3D cell cytotoxicity evaluation system was constructed with the polystyrene-based polyHIPE materials as scaffolds and the cigarette smoke cytotoxicity was evaluated. Results showed that the smoke cytotoxicity against A549 cells is much lower in the 3D cell platform compared to the traditional 2D system, showing the great potential of the polyHIPE scaffolds for 3D cell culture and the cytotoxic evaluation of cigarette smoke.

SELECTION OF CITATIONS
SEARCH DETAIL
...