Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616391

ABSTRACT

California leads the United States in peach (Prunus persica L.) production, with approximately 505,000 tons produced in 2021 and valued at $378.3 million (California Agriculture Statistics Review, 2021-2022). During the spring and summer of 2023, twig and branch dieback were observed in three peach orchards (cvs. Late Ross and Starn) in San Joaquin County, California. Wood cankers and discoloration also occurred in branches, generally initiating at pruning wounds. Approximately 8 symptomatic twigs or branches per orchard were collected to proceed with the isolation of necrotic tissues on acidified potato dextrose agar (APDA). Isolations consistently yielded colonies of the fungal pathogen Calosphaeria pulchella (Pers. : Fr.) J. Schröt. (Réblová et al. 2004; Trouillas et al. 2012). Pure cultures were obtained by transferring single hyphal tips onto new APDA Petri plates. Colonies on APDA grew dark pink to red or purple in their center, with a white margin. Conidiogenesis was phialidic, producing round conidial masses at the tip of phialides. Conidia were produced abundantly on APDA, and were hyaline, allantoid to oblong-ellipsoidal, 4 to 5.5 (7) × 1.2 to 2.3 µm (n = 60). Two representative isolates (SJC-62 and SJC-64) were selected for genomic DNA extraction and sequencing of the internal transcribed spacer region (ITS) using ITS5/ITS4 universal primers and the beta-tubulin (TUB2) gene region using primers Bt2a and Bt2b. Consensus sequences of the two genes for the two isolates (ITS: PP063990, PP063991; TUB2: PP068303, PP068304) were compared to reference sequences (Réblová et al. 2015; Trouillas et al. 2012) using BLAST analysis. The ITS sequences of SJC-62 and SJC-64 were 99.8 and 99.5% identical to that of C. pulchella ex-type strain CBS 115999 (NR145357) and reference strain SS07 (HM237297); the TUB2 sequences were at least 98.5% identical to that of C. pulchella CBS 115999 (KT716476). Pathogenicity tests were conducted in 2- to 3-year-old healthy branches on 7-year-old peach trees, cvs. Loadel, Late Ross and Starn using the two fungal isolates and a control treatment (1 branch per treatment and 3 branches per tree) on each of 8-tree replicates. Branches were inoculated in June 2023 following wounding with a 5 mm cork borer to remove the bark and placing an agar plug from the margin of 10-day-old colonies on APDA directly into the fresh wound. Sterile agar plugs were used as controls. Inoculation sites were covered with petroleum jelly and wrapped with Parafilm to retain moisture. The experiment was completed twice. After four months, cankers and vascular discolorations developed around the inoculation sites. Length of vascular discoloration in inoculated branches averaged 72, 75, and 79 mm, for the Loadel, Starn, and Late Ross cvs., respectively. Calosphaeria pulchella was re-isolated from inoculated branches at 80 to 100% recovery rate, thus fulfilling Koch's postulates. The average length of vascular discoloration in the control was 13.5 mm and no fungi were recovered from control branches. Calosphaeria canker caused by C. pulchella is a global disease of sweet cherry. Recently, it was reported to cause cankers in peach trees in Chile (Grinbergs et al. 2023). To our knowledge, this is the first report of C. pulchella causing cankers and twig dieback of peach trees in the United States. These findings improve our knowledge of the etiology of canker diseases affecting peach trees and is critical for the development of effective disease management strategies.

2.
Plant Dis ; 108(6): 1695-1702, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38173260

ABSTRACT

The major fungal canker pathogens causing branch dieback of sweet cherry trees in California include Calosphaeria pulchella, Cytospora sorbicola, and Eutypa lata. These pathogens have long been known to infect cherry trees mainly through pruning wounds. However, recent field observations revealed numerous shoots and fruiting spurs exhibiting dieback symptoms with no apparent pruning wounds or mechanical injuries. Accordingly, this study was conducted to assess the incidence of the three pathogens in symptomatic terminal shoots and dying fruiting spurs, in addition to the wood below pruning wounds in branches. Surveys were conducted in five sweet cherry orchards across three counties in California. We also investigated the possibility that leaf scars, bud scars, and wounds resulting from fruit picking could serve as infection courts for Cal. pulchella, Cyt. sorbicola, and E. lata by means of artificial inoculations in the field. Orchard surveys revealed that Cal. pulchella had the highest pathogen incidence below pruning wounds in branch samples, followed by Cyt. sorbicola and E. lata. Among terminal shoots with dieback symptoms and dying fruiting spurs, Cyt. sorbicola was the most prevalent, followed by Cal. pulchella. Results from field inoculations indicated that fruit-picking wounds could serve as important infection courts for Cal. pulchella, Cyt. sorbicola, and E. lata, with average pathogen recovery of 41.5, 63, and 36.2%, respectively. Results also indicated that leaf and bud scars could serve as an entry site for Cyt. sorbicola, although recovery was relatively low. The present study is the first to identify harvest-induced wounds on fruiting spurs of sweet cherry as an important infection court of Cal. pulchella, Cyt. sorbicola, and E. lata.


Subject(s)
Ascomycota , Plant Diseases , Prunus avium , Plant Diseases/microbiology , Ascomycota/physiology , Prunus avium/microbiology , Plant Leaves/microbiology , California , Fruit/microbiology
3.
Plant Dis ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37227433

ABSTRACT

Peaches (Prunus persica L.) are an important crop in the United States with California leading the nation in peach production, with approximately 505,000 tons valued at $378.3 million (USDA National Agricultural Statistics Service, 2021, https://www.nass.usda.gov/). From April to July 2022, symptoms of branch and scaffold canker as well as shoot dieback were observed in three peach (cvs. Loadel, Late Ross and Starn) orchards located in San Joaquin County, California. Samples were collected from about 12 trees for each cultivar. Fast-growing, white, flat colonies were consistently isolated from active cankers on acidified potato dextrose agar (APDA) following the method described by (Lawrence et al. 2017). Pure fungal cultures were obtained by transferring single hyphal tips onto new APDA Petri plates. A total of 22 isolates were obtained. Each fungal isolate was recovered from a single diseased branch (40 to 55% recovery). All isolates in this study shared similar morphological characteristics. Fungal colonies were fast-growing with relatively even but slightly dentate margin, flat with white to off-white mycelium that turned vinaceous buff to pale greyish sepia (Rayner 1970) with age. Black, globose, ostiolated pycnidia, 0.8-(1.3)-2.2 mm diameter, with brownish surface hyphae formed on peach wood embedded in PDA after approximately three weeks and exudated buff-colored mucilage. Pycnidia were both solitary and aggregated and had multiple internal locules sharing invaginated walls. Conidiogenous cells were hyaline, smooth-walled, septate, tapering towards the apex, 13-(18.2)-25.1 × 0.8-(1.3)-1.9 µm (n = 40). Conidia were hyaline, allantoid, smooth, aseptate, 5.5-(6.3)-7.1 × 1.4-(1.9)-2.3 µm (n = 40). Genomic DNA was extracted and sequences of the internal transcribed spacer region (ITS) using ITS5/ITS4 universal primers, translation elongation factor 1α gene (TEF) using primers EF1-728F/EF1-986R, second largest subunit of RNA polymerase II (RPB2) using primers RPB2-5F2/fRPB2-7cR, and actin gene region (ACT) using primers ACT-512F/ACT-783R were obtained and compared with sequences available in GenBank (Lawrence et al. 2018; Hanifeh et al. 2022). Isolates were identified as Cytospora azerbaijanica following DNA sequencing and morphological identification. Consensus sequences of the four genes of two representative isolates (SJC-66 and SJC-69) were deposited into GenBank database (ITS: OQ060581 and OQ060582; ACT: OQ082292, OQ082295; TEF: OQ082290 and OQ082293; RPB2: OQ082291 and OQ082294). The Basic Local Alignment Search Tool (BLAST) indicated that the sequenced RPB2 genes of isolates (SJC-66 and SJC-69) were at least 99% identical to that of Cytospora sp. strain shd47 (Accession: MW824360) covering at least 85% of the sequences. The actin genes from our isolates were at least 97.85% identical to that of Cytospora sp. strain shd47 (Accession: MZ014513), covering 100% of the sequences. The translation elongation factor gene from isolates (SJC-66 and SJC-69) was at least 96.4% identical to that of Cytospora sp. strain shd166 (Accession: OM372512), covering 100% of the query. Those top hit strains belong to C. azerbaijanica, recently reported by Hanifeh et al. (2022). Pathogenicity tests were performed by inoculating eight wounded, 2- to 3-year-old healthy branches on each of eight 7-year-old peach trees, cvs. Loadel, Late Ross and Starn, using 5-mm-diameter mycelium plugs collected from the margin of an actively growing fungal colony on APDA. Controls were mock-inoculated with sterile agar plugs. Inoculation sites were covered with petroleum jelly and wrapped with Parafilm to keep moisture. The experiment was performed twice. After four months, inoculation tests resulted in vascular discoloration (canker) above and below the inoculation sites (average necrosis length of 114.1 mm). Cytospora azerbaijanica was re-isolated from all infected branches (70 to 100% recovery) completing Koch's postulates. Controls remained symptomless and no fungi were isolated from the slightly discolored tissue. Cytospora species are destructive canker and dieback pathogens of numerous woody hosts worldwide. Recently, C. azerbaijanica was reported in causing canker disease of apple trees in Iran (Hanifeh et al. 2022). To our knowledge, this is the first report of C. azerbaijanica causing canker and shoot dieback of peach trees in the United States and worldwide. These findings will aid towards a better understanding of genetic diversity and host range of C. azerbaijanica.

4.
Plant Dis ; 107(11): 3517-3522, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37163313

ABSTRACT

Fungal canker pathogens commonly infect trees at pruning wounds leading to branch dieback and loss of productivity in sweet cherry orchards. However, the seasonal susceptibility of sweet cherry pruning wounds to Calosphaeria pulchella, Cytospora sorbicola, and Eutypa lata is not well understood. This study compared the susceptibility of sweet cherry pruning wounds made during the dormant season (January) and the postharvest season (late May to June) to infection by main canker pathogens in California. Field trials were conducted in three cherry orchards and trees were pruned at the different periods over 2 years. Fresh pruning wounds were inoculated with spores of each pathogen, and pathogen recovery was assessed through microbiological isolations at 3 to 4 months after inoculations. Pruning wounds made in late May and June resulted in significantly higher infection by Cal. pulchella compared to pruning wounds made in January. Pruning wounds made during both seasons were generally equally susceptible to Cyt. sorbicola and E. lata infections. However, there was one orchard where dormant pruning wounds were more susceptible to infection by E. lata and there was one particularly cold winter where Cyt. sorbicola did not infect pruning wounds. Overall, our findings suggest that Cal. pulchella infections of cherry pruning wounds are more likely to occur during periods of warm temperatures such as late spring and early summer. However, infections by Cyt. sorbicola and E. lata can occur year-round if inoculum is present and if winter temperatures are not abnormally low for California. Finally, our results suggest that the emergence of Cal. pulchella as a major canker pathogen of sweet cherry in California may be the result of a shift from dormant to after-harvest pruning of sweet cherry trees.


Subject(s)
Prunus avium , Seasons
5.
Phytopathology ; 113(8): 1417-1427, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37021932

ABSTRACT

Fungal canker pathogens of almond initiate infection in trees primarily through pruning wounds. Biological control agents (BCAs) have the potential to provide long-term protection of pruning wounds by colonizing the wound surfaces and underlying tissues. Laboratory and field tests were performed to assess the efficacy of various commercial and experimental BCAs as wound protectants against almond canker pathogens. Four Trichoderma-based BCAs were evaluated using detached almond stems in the laboratory against the canker pathogens Cytospora plurivora, Eutypa lata, Neofusicoccum parvum, and Neoscytalidium dimidiatum. Results indicated that Trichoderma atroviride SC1 and T. paratroviride RTFT014 significantly reduced infections by all four pathogens. The abilities of these four BCAs to protect almond pruning wounds against E. lata and N. parvum were further evaluated in field trials using two almond cultivars and during two consecutive years. Both T. atroviride SC1 and T. paratroviride RTFT014 protected almond pruning wounds against E. lata and N. parvum as efficiently as thiophanate-methyl, the recommended fungicide for treatment of almond pruning wounds. Comparisons of different application timings of BCA in relation to pathogen inoculation revealed a significant improvement in wound protection when inoculations were conducted 7 days versus 24 h post-BCA application for N. parvum, but not for E. lata. T. atroviride SC1 and T. paratroviride RTFT014 are promising candidates for the preventive protection of almond pruning wounds and for inclusion in integrated pest management programs and organic almond production systems.

6.
Plant Dis ; 107(11): 3448-3456, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37081630

ABSTRACT

Although fungal canker diseases constitute a limiting factor to orchard productivity and longevity, little is known about the effects of temperature on spore germination and mycelial growth of the fungal causal agents. Accordingly, the germination of spores and colony growth of Calosphaeria pulchella, Cytospora sorbicola, and Eutypa lata were evaluated after incubation on 2% water agar and 4% potato dextrose agar, respectively, at 5, 10, 15, 20, 25, 30, 35, and 40°C. Temperature optima for spore germination and mycelial growth were derived from nonlinear models fitted to germination rates and colony diameter data. The optimal temperatures for spore germination of Cal. pulchella were 28.5°C for ascospores and 29.2°C for conidia. The optimal temperatures for Cyt. sorbicola conidia and E. lata ascospore germination were 25.8 and 23.1°C, respectively. The germination of ascospores and conidia of Cal. pulchella at temperatures below 15°C required an incubation time of at least 72 h. Ascospores of E. lata and conidia of Cyt. sorbicola germinated at 10°C after 36 h. The optimal temperature for colony growth of Cal. pulchella was 24.6°C, whereas it was 21.7°C for both Cyt. sorbicola and E. lata. Our study indicates that temperature requirements for basic biological functions are higher for Cal. pulchella than for Cyt. sorbicola and E. lata. The overall higher temperatures of California relative to other cherry-producing regions in the United States or worldwide could explain the prevalence of Calosphaeria canker in the state. Conversely, Cyt. sorbicola and E. lata appear better adapted to cooler temperatures.


Subject(s)
Prunus avium , Temperature , Agar/pharmacology , Germination , Spores, Fungal
7.
Microbiol Resour Announc ; 8(15)2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30975819

ABSTRACT

Fusarium wilt of tomato, caused by the soilborne fungus Fusarium oxysporum f. sp. lycopersici, is an increasingly important disease of tomato. This paper reports the high-quality draft genome assembly of F. oxysporum f. sp. lycopersici isolate D11 (race 3), which consists of 39 scaffolds with 57,281,978 bp (GC content, 47.5%), an N 50 of 4,408,267 bp, a mean read coverage of 99.8×, and 17,682 predicted genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...