Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 305
Filter
1.
Alzheimers Dement ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958117

ABSTRACT

INTRODUCTION: Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. METHODS: Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. RESULTS: A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, P = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. DISCUSSION: These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. HIGHLIGHTS: Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at P < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.

2.
Ann Acad Med Singap ; 53(3): 170-186, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38920244

ABSTRACT

Introduction: Tuberculosis (TB) remains endemic in Singapore. Singapore's clinical practice guidelines for the management of tuberculosis were first published in 2016. Since then, there have been major new advances in the clinical management of TB, ranging from diagnostics to new drugs and treatment regimens. The National TB Programme convened a multidisciplinary panel to update guidelines for the clinical management of drug-susceptible TB infection and disease in Singapore, contextualising current evidence for local practice. Method: Following the ADAPTE framework, the panel systematically reviewed, scored and synthesised English-language national and international TB clinical guidelines published from 2016, adapting recommendations for a prioritised list of clinical decisions. For questions related to more recent advances, an additional primary literature review was conducted via a targeted search approach. A 2-round modified Delphi process was implemented to achieve consensus for each recommendation, with a final round of edits after consultation with external stakeholders. Results: Recommendations for 25 clinical questions spanning screening, diagnosis, selection of drug regimen, monitoring and follow-up of TB infection and disease were formulated. The availability of results from recent clinical trials led to the inclusion of shorter treatment regimens for TB infection and disease, as well as consensus positions on the role of newer technologies, such as computer-aided detection-artificial intelligence products for radiological screening of TB disease, next-generation sequencing for drug-susceptibility testing, and video observation of treatment. Conclusion: The panel updated recommendations on the management of drug-susceptible TB infection and disease in Singapore.


Subject(s)
Antitubercular Agents , Delphi Technique , Tuberculosis, Pulmonary , Tuberculosis , Humans , Singapore , Antitubercular Agents/therapeutic use , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/diagnosis , Tuberculosis/drug therapy , Tuberculosis/diagnosis , Consensus
3.
J Alzheimers Dis Rep ; 8(1): 575-587, 2024.
Article in English | MEDLINE | ID: mdl-38746629

ABSTRACT

Background: Mitochondrial DNA (mtDNA) is a double-stranded circular DNA and has multiple copies in each cell. Excess heteroplasmy, the coexistence of distinct variants in copies of mtDNA within a cell, may lead to mitochondrial impairments. Accurate determination of heteroplasmy in whole-genome sequencing (WGS) data has posed a significant challenge because mitochondria carrying heteroplasmic variants cannot be distinguished during library preparation. Moreover, sequencing errors, contamination, and nuclear mtDNA segments can reduce the accuracy of heteroplasmic variant calling. Objective: To efficiently and accurately call mtDNA homoplasmic and heteroplasmic variants from the large-scale WGS data generated from the Alzheimer's Disease Sequencing Project (ADSP), and test their association with Alzheimer's disease (AD). Methods: In this study, we present MitoH3-a comprehensive computational pipeline for calling mtDNA homoplasmic and heteroplasmic variants and inferring haplogroups in the ADSP WGS data. We first applied MitoH3 to 45 technical replicates from 6 subjects to define a threshold for detecting heteroplasmic variants. Then using the threshold of 5% ≤variant allele fraction≤95%, we further applied MitoH3 to call heteroplasmic variants from a total of 16,113 DNA samples with 6,742 samples from cognitively normal controls and 6,183 from AD cases. Results: This pipeline is available through the Singularity container engine. For 4,311 heteroplasmic variants identified from 16,113 samples, no significant variant count difference was observed between AD cases and controls. Conclusions: Our streamlined pipeline, MitoH3, enables computationally efficient and accurate analysis of a large number of samples.

4.
Soc Sci Med ; 348: 116849, 2024 May.
Article in English | MEDLINE | ID: mdl-38581815

ABSTRACT

OBJECTIVE: This study examines whether individualism weakens the effectiveness of the COVID-19 vaccine eligibility expansions in the United States in 2021, and assesses the associated social benefits or costs associated with individualism. METHODS: We construct a county-level composite individualism index as a proxy of culture and the fraction of vaccine eligible population as a proxy of vaccination campaign (mean: 41.34%). We estimate whether the COVID-19 vaccine eligibility policy is less effective in promoting vaccine coverage, reducing in COVID-19 related hospitalization and death using a linear two-way fixed effect model in a sample of 2866 counties for the period between early December 2020 and July 1, 2021. We also test whether individualism shapes people's attitudes towards vaccine using a linear probability model in a sample of 625,308 individuals aged 18-65 (mean age: 43.3; 49% male; 59.1% non-Hispanic white, 19.1% Hispanic, 12% African American; 5.9% Asian) from the Household Pulse Survey. RESULTS: The effects of expanded vaccine eligibility are diminished in counties with greater individualism, as evidenced by lower effectiveness in increasing vaccination rates and reducing outpatient doctor visits primarily for COVID-related symptoms and COVID deaths. Moreover, our results show that this cultural influence on attitudes towards vaccine is more pronounced among the less educated, but unrelated to race. CONCLUSION: Assuming an average level of vaccine eligibility policies and an average intensity of individualism across the nation, we calculate that the average social cost associated with an individualistic culture amid the pandemic is approximately $50.044 billion, equivalent to 1.32% of the total U.S. health care spending in 2019. Our paper suggests that strategies to promote public policy compliance should be tailored to accommodate cultural and social contexts.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/economics , COVID-19 Vaccines/administration & dosage , Male , COVID-19/prevention & control , COVID-19/epidemiology , Adult , United States , Female , Middle Aged , Aged , Adolescent , Young Adult , Public Health , SARS-CoV-2 , Individuality
5.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38418088

ABSTRACT

Detecting structural variants (SVs) in whole-genome sequencing poses significant challenges. We present a protocol for variant calling, merging, genotyping, sensitivity analysis, and laboratory validation for generating a high-quality SV call set in whole-genome sequencing from the Alzheimer's Disease Sequencing Project comprising 578 individuals from 111 families. Employing two complementary pipelines, Scalpel and Parliament, for SV/indel calling, we assessed sensitivity through sample replicates (N = 9) with in silico variant spike-ins. We developed a novel metric, D-score, to evaluate caller specificity for deletions. The accuracy of deletions was evaluated by Sanger sequencing. We generated a high-quality call set of 152,301 deletions of diverse sizes. Sanger sequencing validated 114 of 146 detected deletions (78.1%). Scalpel excelled in accuracy for deletions ≤100 bp, whereas Parliament was optimal for deletions >900 bp. Overall, 83.0% and 72.5% of calls by Scalpel and Parliament were validated, respectively, including all 11 deletions called by both Parliament and Scalpel between 101 and 900 bp. Our flexible protocol successfully generated a high-quality deletion call set and a truth set of Sanger sequencing-validated deletions with precise breakpoints spanning 1-17,000 bp.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Whole Genome Sequencing/methods
6.
medRxiv ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38293024

ABSTRACT

The prevalence of dementia among South Asians across India is approximately 7.4% in those 60 years and older, yet little is known about genetic risk factors for dementia in this population. Most known risk loci for Alzheimer's disease (AD) have been identified from studies conducted in European Ancestry (EA) but are unknown in South Asians. Using whole-genome sequence data from 2680 participants from the Diagnostic Assessment of Dementia for the Longitudinal Aging Study of India (LASI-DAD), we performed a gene-based analysis of 84 genes previously associated with AD in EA. We investigated associations with the Hindi Mental State Examination (HMSE) score and factor scores for general cognitive function and five cognitive domains. For each gene, we examined missense/loss-of-function (LoF) variants and brain-specific promoter/enhancer variants, separately, both with and without incorporating additional annotation weights (e.g., deleteriousness, conservation scores) using the variant-Set Test for Association using Annotation infoRmation (STAAR). In the missense/LoF analysis without annotation weights and controlling for age, sex, state/territory, and genetic ancestry, three genes had an association with at least one measure of cognitive function (FDR q<0.1). APOE was associated with four measures of cognitive function, PICALM was associated with HMSE score, and TSPOAP1 was associated with executive function. The most strongly associated variants in each gene were rs429358 (APOE ε4), rs779406084 (PICALM), and rs9913145 (TSPOAP1). rs779406084 is a rare missense mutation that is more prevalent in LASI-DAD than in EA (minor allele frequency=0.075% vs. 0.0015%); the other two are common variants. No genes in the brain-specific promoter/enhancer analysis met criteria for significance. Results with and without annotation weights were similar. Missense/LoF variants in some genes previously associated with AD in EA are associated with measures of cognitive function in South Asians from India. Analyzing genome sequence data allows identification of potential novel causal variants enriched in South Asians.

7.
Nat Commun ; 15(1): 684, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263370

ABSTRACT

The heterogeneity of the whole-exome sequencing (WES) data generation methods present a challenge to a joint analysis. Here we present a bioinformatics strategy for joint-calling 20,504 WES samples collected across nine studies and sequenced using ten capture kits in fourteen sequencing centers in the Alzheimer's Disease Sequencing Project. The joint-genotype called variant-called format (VCF) file contains only positions within the union of capture kits. The VCF was then processed specifically to account for the batch effects arising from the use of different capture kits from different studies. We identified 8.2 million autosomal variants. 96.82% of the variants are high-quality, and are located in 28,579 Ensembl transcripts. 41% of the variants are intronic and 1.8% of the variants are with CADD > 30, indicating they are of high predicted pathogenicity. Here we show our new strategy can generate high-quality data from processing these diversely generated WES samples. The improved ability to combine data sequenced in different batches benefits the whole genomics research community.


Subject(s)
Alzheimer Disease , Humans , Exome , Computational Biology , Data Accuracy , Genotype
8.
Alzheimers Dement ; 20(2): 1123-1136, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37881831

ABSTRACT

INTRODUCTION: The National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site Alzheimer's Genomics Database (GenomicsDB) is a public knowledge base of Alzheimer's disease (AD) genetic datasets and genomic annotations. METHODS: GenomicsDB uses a custom systems architecture to adopt and enforce rigorous standards that facilitate harmonization of AD-relevant genome-wide association study summary statistics datasets with functional annotations, including over 230 million annotated variants from the AD Sequencing Project. RESULTS: GenomicsDB generates interactive reports compiled from the harmonized datasets and annotations. These reports contextualize AD-risk associations in a broader functional genomic setting and summarize them in the context of functionally annotated genes and variants. DISCUSSION: Created to make AD-genetics knowledge more accessible to AD researchers, the GenomicsDB is designed to guide users unfamiliar with genetic data in not only exploring but also interpreting this ever-growing volume of data. Scalable and interoperable with other genomics resources using data technology standards, the GenomicsDB can serve as a central hub for research and data analysis on AD and related dementias. HIGHLIGHTS: The National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) offers to the public a unique, disease-centric collection of AD-relevant GWAS summary statistics datasets. Interpreting these data is challenging and requires significant bioinformatics expertise to standardize datasets and harmonize them with functional annotations on genome-wide scales. The NIAGADS Alzheimer's GenomicsDB helps overcome these challenges by providing a user-friendly public knowledge base for AD-relevant genetics that shares harmonized, annotated summary statistics datasets from the NIAGADS repository in an interpretable, easily searchable format.


Subject(s)
Alzheimer Disease , United States , Humans , Alzheimer Disease/genetics , Genome-Wide Association Study , National Institute on Aging (U.S.) , Genomics , Databases, Factual , Genetic Predisposition to Disease/genetics
9.
Alzheimers Dement ; 20(2): 1250-1267, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984853

ABSTRACT

BACKGROUND: Women demonstrate a memory advantage when cognitively healthy yet lose this advantage to men in Alzheimer's disease. However, the genetic underpinnings of this sex difference in memory performance remain unclear. METHODS: We conducted the largest sex-aware genetic study on late-life memory to date (Nmales  = 11,942; Nfemales  = 15,641). Leveraging harmonized memory composite scores from four cohorts of cognitive aging and AD, we performed sex-stratified and sex-interaction genome-wide association studies in 24,216 non-Hispanic White and 3367 non-Hispanic Black participants. RESULTS: We identified three sex-specific loci (rs67099044-CBLN2, rs719070-SCHIP1/IQCJ-SCHIP), including an X-chromosome locus (rs5935633-EGL6/TCEANC/OFD1), that associated with memory. Additionally, we identified heparan sulfate signaling as a sex-specific pathway and found sex-specific genetic correlations between memory and cardiovascular, immune, and education traits. DISCUSSION: This study showed memory is highly and comparably heritable across sexes, as well as highlighted novel sex-specific genes, pathways, and genetic correlations that related to late-life memory. HIGHLIGHTS: Demonstrated the heritable component of late-life memory is similar across sexes. Identified two genetic loci with a sex-interaction with baseline memory. Identified an X-chromosome locus associated with memory decline in females. Highlighted sex-specific candidate genes and pathways associated with memory. Revealed sex-specific shared genetic architecture between memory and complex traits.


Subject(s)
Alzheimer Disease , Cognitive Aging , Humans , Male , Female , Genome-Wide Association Study , Alzheimer Disease/genetics , Cognition , Sex Characteristics
10.
Alzheimers Dement ; 20(2): 1268-1283, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37985223

ABSTRACT

INTRODUCTION: Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. METHODS: We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. RESULTS: We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. DISCUSSION: We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. HIGHLIGHTS: Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Genome-Wide Association Study , Endophenotypes , Genetic Predisposition to Disease/genetics , Cognition , Memory Disorders/genetics , Polymorphism, Single Nucleotide/genetics
11.
Alzheimers Dement ; 20(1): 253-265, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37578203

ABSTRACT

INTRODUCTION: Multiple infectious agents, including viruses, bacteria, fungi, and protozoa, have been linked to Alzheimer's disease (AD) risk by independent lines of evidence. We explored this association by comparing the frequencies of viral species identified in a large sample of AD cases and controls. METHODS: DNA sequence reads that did not align to the human genome in sequences were mapped to viral reference sequences, quantified, and then were tested for association with AD in whole exome sequences (WES) and whole genome sequences (WGS) datasets. RESULTS: Several viruses were significant predictors of AD according to the machine learning classifiers. Subsequent regression analyses showed that herpes simplex type 1 (HSV-1) (odds ratio [OR] = 3.71, p = 8.03 × 10-4) and human papillomavirus 71 (HPV-71; OR = 3.56, p = 0.02), were significantly associated with AD after Bonferroni correction. The phylogenetic-related cluster of Herpesviridae was significantly associated with AD in several strata of the data (p < 0.01). DISCUSSION: Our results support the hypothesis that viral infection, especially HSV-1, is associated with AD risk.


Subject(s)
Alzheimer Disease , Herpes Simplex , Herpesvirus 1, Human , Humans , Alzheimer Disease/complications , Phylogeny , Herpesvirus 1, Human/genetics , DNA
12.
Bioinformatics ; 39(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37947320

ABSTRACT

SUMMARY: Preparing functional genomic (FG) data with diverse assay types and file formats for integration into analysis workflows that interpret genome-wide association and other studies is a significant and time-consuming challenge. Here we introduce hipFG (Harmonization and Integration Pipeline for Functional Genomics), an automatically customized pipeline for efficient and scalable normalization of heterogenous FG data collections into standardized, indexed, rapidly searchable analysis-ready datasets while accounting for FG datatypes (e.g. chromatin interactions, genomic intervals, quantitative trait loci). AVAILABILITY AND IMPLEMENTATION: hipFG is freely available at https://bitbucket.org/wanglab-upenn/hipFG. A Docker container is available at https://hub.docker.com/r/wanglab/hipfg.


Subject(s)
Genome-Wide Association Study , Software , Genomics , Chromatin , Quantitative Trait Loci
13.
Res Sq ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37886469

ABSTRACT

Structural variations (SVs) are important contributors to the genetics of human diseases. However, their role in Alzheimer's disease (AD) remains largely unstudied due to challenges in accurately detecting SVs. We analyzed whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (N = 16,905) and identified 400,234 (168,223 high-quality) SVs. Laboratory validation yielded a sensitivity of 82% (85% for high-quality). We found a significant burden of deletions and duplications in AD cases, particularly for singletons and homozygous events. On AD genes, we observed the ultra-rare SVs associated with the disease, including protein-altering SVs in ABCA7, APP, PLCG2, and SORL1. Twenty-one SVs are in linkage disequilibrium (LD) with known AD-risk variants, exemplified by a 5k deletion in complete LD with rs143080277 in NCK2. We also identified 16 SVs associated with AD and 13 SVs linked to AD-related pathological/cognitive endophenotypes. This study highlights the pivotal role of SVs in shaping our understanding of AD genetics.

14.
Kidney Int Rep ; 8(9): 1741-1751, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37705910

ABSTRACT

Introduction: Vitamin K deficiency among patients on hemodialysis (HD) affects the function of matrix GLA protein (MGP), a potent vitamin K-dependent inhibitor of vascular calcification (VC). Methods: We conducted a single-center randomized controlled trial (RCT) on maintenance HD patients to examine if vitamin K2 supplementation can reduce progression of coronary artery calcification (CAC) over an 18-month study period. Patients were randomized to vitamin K2 group receiving menaquinone-7360 µg 3 times/wk or control group. The primary outcome was CAC scores at the end of the study period. The secondary outcomes were aortic valve calcification (AVC), carotid-femoral pulse wave velocity (cfPWV), aortic augmentation index (AIx), dephosphorylated undercarboxylated MGP (dp-ucMGP) levels, major adverse cardiac events (MACE), and vascular access events. Results: Of the 178 patients randomized, follow-up was completed for 138 patients. The CAC scores between the 2 groups were not statistically different at the end of 18 months (relative mean difference [RMD] 0.85, 95% CI 0.55-1.31). The secondary outcomes did not differ significantly in AVC (RMD 0.82, 95% CI 0.34-1.98), cfPWV (absolute mean difference [AMD] 0.55, 95% CI -0.50 to 1.60), and AIx (AMD 0.13, 95% CI -3.55 to 3.80). Supplementation with vitamin K2 did reduce dp-ucMGP levels (AMD -86, 95% CI -854 to -117). The composite outcome of MACE and mortality was not statistically different between the 2 groups (Hazard ratio = 0.98, 95% CI 0.50-1.94). Conclusion: Our study did not demonstrate a beneficial effect of vitamin K2 in reducing progression of VC in this population at the studied dose and duration.

15.
Biomed J ; : 100661, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37774792

ABSTRACT

BACKGROUND: Intestinal parasitic infections are the most common infectious diseases among Southeast Asian migrant workers in Taiwan, especially for infections with Blastocystis hominis. However, little is known about the impact of Blastocystis subtypes (STs) on the gut microbiota. MATERIAL AND METHODS: We retrospectively evaluated the prevalence of intestinal parasites in a teaching hospital in Northern Taiwan in the period of 2015 to 2019. Blastocystis-positive stool specimens were collected for ST analysis by polymerase chain reaction in 2020. Intestinal microbiota analyses of different Blastocystis STs and Blastocystis-free individuals were conducted by 16S rRNA sequencing. RESULTS: A total of 13,859 subjects were analyzed, of which 1,802 cases (13%) were diagnosed with intestinal parasitic infections. B. hominis infections were the most prevalent (n = 1546, 85.7%). ST analysis of Blastocystis-positive samples (n=150) indicated that ST1 was the most common type, followed by ST3, ST4, ST2, ST7, and ST5. Different Blastocystis STs (ST1, ST3, and ST4) were associated with distinct richness and diversity of the microbiota. Taxonomic profiles revealed that Akkermansia muciniphila was significantly enriched for all analyzed Blastocystis STs, whereas Holdemanella biformis was more abundant in the Blastocystis-free group. Additionally, Succinivibrio dextrinosolvens and Coprococcus eutactus were specifically more abundant in ST3 carriers than in non-infected individuals. CONCLUSIONS: This study demonstrates that A. muciniphila is positively associated with all Blastocystis STs, while H. biformis was negatively associated with them. Several bacteria were enriched in specific STs, highlighting the need for further microbiota analysis at the ST level to elucidate the pathogenicity of Blastocystis.

16.
Birth Defects Res ; 115(18): 1770-1779, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37776548

ABSTRACT

BACKGROUND: Maternal diabetes increases the risk for neural tube defects (NTDs). It is unclear if miRNAs, senescence, and DNA damage are involved in this process. In this study, we used neural stem cells as an in vitro proxy of embryonic neuroepithelium to investigate whether high glucose triggers neural stem cell senescence and DNA damage by upregulating miR-200c, which may be responsible for NTDs. METHODS: C17.2 neural stem cells were cultured with normal glucose (5 mM) or high glucose (≥16.7 mM) at different doses and time points for detecting miR-200c levels, markers of senescence and DNA damage. Neural stem cells were exposed to antioxidant SOD1 mimetic Tempol and high glucose for 48 h to test roles of oxidative stress on the miR-200c, senescence, and DNA damage levels. An miR-200c mimic and an inhibitor were transfected into neural stem cells to increase or decrease miR-200c activities. RESULTS: High glucose upregulated miR-200c in neural stem cells. A time course study of the effect of high glucose revealed that miR-200c initially increased at 12 h and reached its zenith at 18 h. Tempol reduced miR-200c levels caused by high glucose. High glucose induced markers of senescence and DNA damage in neural stem cells. Tempol abolished high glucose-induced markers of senescence and DNA damage. The miR-200c inhibitor suppressed high glucose-induced markers of senescence and DNA damage. Treatment with miR-200c mimic imitates high glucose-induced markers of senescence and DNA damage. CONCLUSIONS: We show that high glucose increases miR-200c, which contributes to cellular senescence and DNA damage in neural stem cells and provides a potential pathway for maternal diabetes-induced neural tube defects.


Subject(s)
Diabetes, Gestational , MicroRNAs , Neural Stem Cells , Neural Tube Defects , Pregnancy , Female , Humans , Neural Stem Cells/metabolism , Cellular Senescence/genetics , MicroRNAs/genetics , Neural Tube Defects/genetics , Glucose/pharmacology , Glucose/metabolism , DNA Damage
17.
medRxiv ; 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37693521

ABSTRACT

Alzheimer's Disease (AD) is a common disorder of the elderly that is both highly heritable and genetically heterogeneous. Here, we investigated the association between AD and both common variants and aggregates of rare coding and noncoding variants in 13,371 individuals of diverse ancestry with whole genome sequence (WGS) data. Pooled-population analyses identified genetic variants in or near APOE, BIN1, and LINC00320 significantly associated with AD (p < 5×10-8). Population-specific analyses identified a haplotype on chromosome 14 including PSEN1 associated with AD in Hispanics, further supported by aggregate testing of rare coding and noncoding variants in this region. Finally, we observed suggestive associations (p < 5×10-5) of aggregates of rare coding rare variants in ABCA7 among non-Hispanic Whites (p=5.4×10-6), and rare noncoding variants in the promoter of TOMM40 distinct of APOE in pooled-population analyses (p=7.2×10-8). Complementary pooled-population and population-specific analyses offered unique insights into the genetic architecture of AD.

18.
medRxiv ; 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37693582

ABSTRACT

INTRODUCTION: Despite a two-fold increased risk, individuals of African ancestry have been significantly underrepresented in Alzheimer's Disease (AD) genomics efforts. METHODS: GWAS of 2,903 AD cases and 6,265 cognitive controls of African ancestry. Within-dataset results were meta-analyzed, followed by gene-based and pathway analyses, and analysis of RNAseq and whole-genome sequencing data. RESULTS: A novel AD risk locus was identified in MPDZ on chromosome 9p23 (rs141610415, MAF=.002, P =3.68×10 -9 ). Two additional novel common and nine novel rare loci approached genome-wide significance at P <9×10 -7 . Comparison of association and LD patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 ( ASCL1 ), suggesting that the association is modulated by regional origin of local African ancestry. DISCUSSION: Increased sample sizes and sample sets from Africa covering as much African genetic diversity as possible will be critical to identify additional disease-associated loci and improve deconvolution of local genetic ancestry effects.

19.
medRxiv ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37745545

ABSTRACT

Structural variations (SVs) are important contributors to the genetics of numerous human diseases. However, their role in Alzheimer's disease (AD) remains largely unstudied due to challenges in accurately detecting SVs. Here, we analyzed whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (ADSP, N=16,905 subjects) and identified 400,234 (168,223 high-quality) SVs. We found a significant burden of deletions and duplications in AD cases (OR=1.05, P=0.03), particularly for singletons (OR=1.12, P=0.0002) and homozygous events (OR=1.10, P<0.0004). On AD genes, the ultra-rare SVs, including protein-altering SVs in ABCA7, APP, PLCG2, and SORL1, were associated with AD (SKAT-O P=0.004). Twenty-one SVs are in linkage disequilibrium (LD) with known AD-risk variants, e.g., a deletion (chr2:105731359-105736864) in complete LD (R2=0.99) with rs143080277 (chr2:105749599) in NCK2. We also identified 16 SVs associated with AD and 13 SVs associated with AD-related pathological/cognitive endophenotypes. Our findings demonstrate the broad impact of SVs on AD genetics.

20.
Front Pharmacol ; 14: 1238587, 2023.
Article in English | MEDLINE | ID: mdl-37608893

ABSTRACT

Based on the modification of the structure of dolutegravir, we introduced 1,2,3-triazole moieties with different substituted groups and obtained a lot of novel dolutegravir derivatives. The activity of A549 cells treated with the derivatives was examined, and most compounds showed good inhibitory effects. Among them, compounds 4b and 4g were the most effective, and inhibited the growth of A549 cells with IC50 values of 8.72 ± 0.11 µM and 12.97 ± 0.32 µM, respectively. In addition, compound 4g induced apoptosis and clonal suppression in A549 tumor cells. Compound 4g also activated the LC3 signaling pathway to induce autophagy in tumor cells, and activated the γ-H2AX signaling pathway to induce DNA damage in tumor cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...