Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(20): 22230-22239, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799338

ABSTRACT

Herein, we introduce a novel composite hydrogel scaffold designed for addressing infectious jaw defects, a significant challenge in clinical settings caused by the inherent limited self-regenerative capacity of bone tissues. The scaffold was engineered from a blend of carboxymethyl chitosan (CMCS)/sodium alginate (SA) hydrogel (CSH), ß-cyclodextrin/chlorhexidine clathrate (ß-CD-CHX), and strontium-nanohydroxyapatite nanoparticles (Sr-nHA). The ß-CD-CHX and Sr-nHA components were synthesized using a saturated aqueous solution and a coprecipitation method, respectively. Subsequently, these elements were encapsulated within the CSH matrix. Comprehensive characterization of the CMCS/SA/ß-CD-CHX/Sr-nHA composite hydrogel scaffold via scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy validated the successful synthesis. The swelling and in vitro degradation behaviors proved that the composite hydrogel had good physical properties, while in vitro evaluations demonstrated favorable biocompatibility and osteoinductive properties. Additionally, antibacterial assessments revealed its effectiveness against common pathogens, Staphylococcus aureus and Escherichia coli. Overall, our results indicate that the CMCS/SA/ß-CD-CHX/Sr-nHA composite hydrogel scaffolds exhibit significant potential for effectively treating infection-prone jaw defects.

2.
Front Bioeng Biotechnol ; 12: 1350227, 2024.
Article in English | MEDLINE | ID: mdl-38456007

ABSTRACT

Fibula transplantation plays an irreplaceable role in restoring the function and morphology of the defected mandible. However, the complex load-bearing environment of the mandible makes it urgent to accurately reconstruct the mandible, ensure the position of the condyle after surgery, and restore the patient's occlusal function and contour. The intervention of digital design and three-dimensional (3D) printed titanium mesh provides a more efficient method and idea to solve this problem. Digital design guides the accurate positioning, osteotomy, and simultaneous implant placement during surgery, and 3D printed titanium mesh ensures stable condyle position after surgery, restoring good mandibular function. The double-layer folded fibula maintains the vertical height of the mandible and a good facial contour, and simultaneous implant placement can establish a good occlusal relationship. This study conducted a retrospective analysis of five patients with jaw defects who underwent digital fibula reconstruction over the past 3 years. It was found that the surgical protocol combining digital design, 3D printed intraoperative guides, 3D printed titanium mesh, free fibula flap, immediate implant, and occlusal reconstruction to repair jaw defects had more ideal facial appearance and biological function. It will provide a more reliable surgical protocol for clinical management of large mandibular defects.

3.
RSC Adv ; 14(14): 9848-9859, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38528932

ABSTRACT

Jaw defects, which can result from a multitude of causes, significantly affect the physical well-being and psychological health of patients. The repair of these infected defects presents a formidable challenge in the clinical and research fields, owing to their intricate and diverse nature. This study aims to develop a personalized bone tissue engineering scaffold that synergistically offers antibacterial and osteogenic properties for treating infected maxillary defects. This study engineered a novel temperature-sensitive, sustained-release hydrogel by amalgamating ß-cyclodextrin (ß-CD) with chlorhexidine (CHX) and a decellularized extracellular matrix (dECM). This hydrogel was further integrated with a polylactic acid (PLA)-nano hydroxyapatite (nHA) scaffold, fabricated through 3D printing, to form a multifaceted composite scaffold (nHA/PLA/dECM/ß-CD-CHX). Drug release assays revealed that this composite scaffold ensures prolonged and sustained release. Bacteriological studies confirmed that the ß-CD-CHX loaded scaffold exhibits persistent antibacterial efficacy, thus effectively inhibiting bacterial growth. Moreover, the scaffold demonstrated robust mechanical strength. Cellular assays validated its superior biocompatibility, attributed to dECM and nHA components, significantly enhancing the proliferation, adhesion, and osteogenic differentiation of osteogenic precursor cells (MC3T3-E1). Consequently, the nHA/PLA/dECM/ß-CD-CHX composite scaffold, synthesized via 3D printing technology, shows promise in inducing bone regeneration, preventing infection, and facilitating the repair of jaw defects, positioning itself as a potential breakthrough in bone tissue engineering.

4.
RSC Adv ; 13(6): 3759-3765, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36756570

ABSTRACT

In clinical practice, challenges remain in the treatment of large infected bone defects. Bone tissue engineering scaffolds with good mechanical properties and antibiotic-controlled release are powerful strategies for infection treatment. In this study, we prepared polylactic acid (PLA)/nano-hydroxyapatite (nHA) scaffolds with vertical orthogonal and staggered orthogonal structures by applying 3D printing technology. In addition, vancomycin (Van)-based chitosan (CS) hydrogel (Gel@Van) was loaded on the scaffold (PLA/nHA/CS-Van) to form a local antibiotic release system. The microstructure of the composite scaffold had high porosity with interconnected three-dimensional networks. The mechanical properties of the PLA/nHA/CS-Van composite scaffold were enhanced by the addition of CS-Van. The results of the water contact angle analysis showed that the hydrophilicity of the drug-loaded scaffold improved. In addition, the composite scaffold could produce sustained release in vitro for more than 8 weeks without adverse effects on the proliferation and differentiation of mouse embryonic osteoblasts (MC3T3-E1), which confirmed its good biocompatibility. During the in vitro antimicrobial study, the composite scaffold effectively inhibited the growth of Staphylococcus aureus (S. aureus). Therefore, our results suggest that the PLA/nHA/CS-Van composite scaffold is a promising strategy for treating infected bone defects.

5.
Mol Biol Rep ; 41(12): 8195-201, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25200435

ABSTRACT

Based on genetic diversity analysis with ISSR-PCR, this study was to access the germplasm resources of Platycodon grandiflorum in northern Anhui province. Ten primers that could produce more distinct and repeatable bands were used for ISSR-PCR. Statistic analysis was conducted by POPGENE v. 1.32, Arlequin3.l, NTSYS-pc version 2.1. (1) Seventy-four polymorphic bands (76.29 %) out of a total of 97 were generated from 105 individuals in five populations. (2) Shannon index of diversity ranged from 0.307 to 0.260, diversity at species level was 0.3581, which means superior genetic diversity. (3) Genetic diversity across all the populations revealed by AMOVA indicated that 86.02 % occurred within populations. (4) The Fst value was 0.1398, indicating a intermediate genetic differentiation among populations. (5) Dendrogram relationship illustrated genetic distance was correlated with geographic distance. ISSR markers can be used for studying genetic diversity of P. grandiflorum. Degradation of populations doesn't happen in northern Anhui province, bank of germplasm preservation should be established for cultivation of excellent variety of P. grandiflorum.


Subject(s)
DNA, Plant/analysis , Microsatellite Repeats , Platycodon/genetics , Genetic Variation , Phylogeny , Platycodon/physiology , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...