Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 10(10): uhad176, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37868620

ABSTRACT

Anthocyanins are essential for the quality of perennial horticultural crops, such as grapes. In grapes, ELONGATED HYPOCOTYL 5 (HY5) and MYBA1 are two critical transcription factors that regulate anthocyanin biosynthesis. Our previous work has shown that Vitis vinifera B-box protein 44 (VvBBX44) inhibits anthocyanin synthesis and represses VvHY5 expression in grape calli. However, the regulatory mechanism underlying this regulation was unclear. In this study, we found that loss of VvBBX44 function resulted in increased anthocyanin accumulation in grapevine callus. VvBBX44 directly represses VvMYBA1, which activates VvBBX44. VvMYBA1, but not VvBBX44, directly modulates the expression of grape UDP flavonoid 3-O-glucosyltransferase (VvUFGT). We demonstrated that VvBBX44 represses the transcriptional activation of VvUFGT and VvBBX44 induced by VvMYBA1. However, VvBBX44 and VvMYBA1 did not physically interact in yeast. The application of exogenous anthocyanin stimulated VvBBX44 expression in grapevine suspension cells and tobacco leaves. These findings suggest that VvBBX44 and VvMYBA1 form a transcriptional feedback loop to prevent overaccumulation of anthocyanin and reduce metabolic costs. Our work sheds light on the complex regulatory network that controls anthocyanin biosynthesis in grapevine.

2.
Hortic Res ; 10(3): uhad001, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36938570

ABSTRACT

Grape is a widely cultivated crop with high economic value. Most cultivars derived from mild or cooler climates may not withstand increasing heat stress. Therefore, dissecting the mechanisms of heat tolerance in grapes is of particular significance. Here, we performed comparative transcriptome analysis of Vitis davidii 'Tangwei' (heat tolerant) and Vitis vinifera 'Jingxiu' (heat sensitive) grapevines after exposure to 25°C, 40°C, or 45°C for 2 h. More differentially expressed genes (DEGs) were detected in 'Tangwei' than in 'Jingxiu' in response to heat stress, and the number of DEGs increased with increasing treatment temperatures. We identified a class B Heat Shock Factor, HSFB1, which was significantly upregulated in 'Tangwei', but not in 'Jingxiu', at high temperature. VdHSFB1 from 'Tangwei' and VvHSFB1 from 'Jingxiu' differ in only one amino acid, and both showed similar transcriptional repression activities. Overexpression and RNA interference of HSFB1 in grape indicated that HSFB1 positively regulates the heat tolerance. Moreover, the heat tolerance of HSFB1-overexpressing plants was positively correlated to HSFB1 expression level. The activity of the VdHSFB1 promoter is higher than that of VvHSFB1 under both normal and high temperatures. Promoter analysis showed that more TATA-box and AT~TATA-box cis-elements are present in the VdHSFB1 promoter than the VvHSFB1 promoter. The promoter sequence variations between VdHSFB1 and VvHSFB1 likely determine the HSFB1 expression levels that influence heat tolerance of the two grape germplasms with contrasting thermotolerance. Collectively, we validated the role of HSFB1 in heat tolerance, and the knowledge gained will advance our ability to breed heat-tolerant grape cultivars.

3.
Hortic Res ; 10(1): uhac250, 2023.
Article in English | MEDLINE | ID: mdl-36643748

ABSTRACT

Heat stress limits growth and development of crops including grapevine which is a popular fruit in the world. Genetic variability in crops thermotolerance is not well understood. We identified and characterized heat stress transcription factor HSFA2 in heat sensitive Vitis vinifera 'Jingxiu' (named as VvHSFA2) and heat tolerant Vitis davidii 'Tangwei' (named as VdHSFA2). The transcriptional activation activities of VdHSFA2 are higher than VvHSFA2, the variation of single amino acid (Thr315Ile) in AHA1 motif leads to the difference of transcription activities between VdHSFA2 and VvHSFA2. Based on 41 Vitis germplasms, we found that HSFA2 is differentiated at coding region among heat sensitive V. vinifera, and heat tolerant Vitis davidii and Vitis quinquangularis. Genetic evidence demonstrates VdHSFA2 and VvHSFA2 are positive regulators in grape thermotolerance, and the former can confer higher thermotolerance than the latter. Moreover, VdHSFA2 can regulate more target genes than VvHSFA2. As a target gene of both VdHSFA2 and VvHSFA2, overexpression of MBF1c enhanced the grape thermotolerance whereas dysfunction of MBF1c resulted in thermosensitive phenotype. Together, our results revealed that VdHSFA2 confers higher thermotolerance than VvHSFA2, and MBF1c acts as their target gene to induce thermotolerance. The VdHSFA2 may be adopted for molecular breeding in grape thermotolerance.

4.
Mikrochim Acta ; 188(5): 174, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893538

ABSTRACT

Using an ultrasonication-assisted liquid exfoliation method, we have synthesized PtS2 nanosheets with good reproducibility. Herein, intrinsic peroxidase-like activity was for the first time demonstrated for PtS2 nanosheets, which can catalyze H2O2 oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to generate a colored solution. The catalytic mechanism of PtS2 nanosheets was investigated, which indicated that acceleration of the electron transfer between TMB and H2O2 was the main reason for the peroxidase-like activity of PtS2 nanosheets. Based on these observations, we exploited PtS2 nanosheets integrated into dopamine-functionalized hyaluronic acid (HA-DA) hydrogel microspheres by droplet microfluidics to construct PtS2 nanosheet- and PtS2@HA-DA microsphere-based sensors for highly sensitive determination of H2O2. When coupled with glucose oxidase, we further developed two glucose sensors based on the above two methods. Among them, the linearity of the PtS2 nanosheet-based spectrophotometry was in the range of 0.5 to 150 µM and the limit of detection as low as 0.20 µM. The linearity of the microsphere-based colorimetry was in the range 200 to 12,000 µM with a detection limit of 29.95 µM. Both of the glucose sensors can be applied to the determination of glucose in human serum with reliable results and reproducibility.


Subject(s)
Peroxidase , Colorimetry , Glucose , Hydrogen Peroxide
5.
BMC Plant Biol ; 20(1): 302, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32605636

ABSTRACT

BACKGROUND: Berry color is an important trait in grapes and is mainly determined by the anthocyanin content and composition. To further explore the coloring mechanism of grape berries, the F1 population of Vitis vinifera 'Red Globe' × 'Muscat Hamburg' was used to map the color locus, and transcriptome analysis was performed to assist in screening candidate genes. RESULTS: A total of 438,407 high-quality single-nucleotide polymorphisms (SNPs) were obtained from whole-genome resequencing (WGS) of the population, and 27,454 SNPs were selected to construct a high-density genetic map. The selected SNPs were clustered into 19 linkage groups (LGs) spanning a genetic distance of 1442.638 cM. Berry color was evaluated by color grade, chromatic aberration, total anthocyanin content and anthocyanin composition. The Pearson correlation coefficients of these phenotypes in 2017 and 2018 were significant at the 0.01 level. The major color locus of MYBA1 and MYBA2 on LG2 was identified, explaining between 26 and 63.6% of all phenotypic variance. Furthermore, 9 additional QTLs with smaller effects were detected on Chr2, Chr4, Chr6, Chr11 and Chr17. Combined with the gene annotation and RNA-seq data, multiple new candidate genes were selected from the above QTLs. CONCLUSION: These results indicated that grape berry color is a quantitative trait controlled by a major color locus and multiple minor loci. Though the major color locus was consistent with previous studies, several minor QTLs and candidate genes associated with grape berry color and anthocyanin accumulation were identified in this study. And the specific regulatory mechanism still needs to be further explored.


Subject(s)
Genes, Plant , Quantitative Trait Loci , Vitis/genetics , Chromosome Mapping , Chromosomes, Plant , Gene Expression Profiling , Phenotype , Pigmentation/genetics , Polymorphism, Single Nucleotide , Whole Genome Sequencing
6.
Mikrochim Acta ; 187(7): 408, 2020 06 29.
Article in English | MEDLINE | ID: mdl-32601810

ABSTRACT

A simple and efficient ultrasonication-assisted liquid exfoliation method is proposed to produce PtS2 nanosheets on a large scale and improve their dispersion in aqueous solution by surface polyethylene glycol modification. The interaction of polyethylene glycol-modified PtS2 (PEG-PtS2) nanosheets with fluorescent labeled DNA and the fluorescence quenching mechanism using FAM-labeled hpv16e6 gene fragment as a probe was investigated. The excitation and emission wavelengths were 468 and 517 nm, respectively. The fluorescence quenching mechanism of PEG-PtS2 nanosheets for double-stranded DNA (dsDNA) might stem from the static quenching effect. Based on the difference in fluorescence quenching capability of PEG-PtS2 nanosheets in fluorescent probe tagged single-stranded DNA (ssDNA) and dsDNA, a mix-and-detect method was proposed for determination of DNA. Without the need for probe immobilization and tedious washing steps, the genotyping of human papillomavirus (HPV) was easily achieved. The limit of detection was calculated to 0.44 nM, showing a good linear range within 0.05-10 nM. We believe this biosensor provides opportunities to develop a simple and low-cost strategy for molecular diagnostics. Graphical abstract.


Subject(s)
DNA, Viral/analysis , Human papillomavirus 16/chemistry , Nanostructures/chemistry , Platinum Compounds/chemistry , Polyethylene Glycols/chemistry , Biosensing Techniques/methods , Cervix Uteri/virology , Female , Fluorescence , Fluorescent Dyes/chemistry , Genotyping Techniques , Humans , Limit of Detection
7.
Gene ; 728: 144284, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31838251

ABSTRACT

The color of berry skin is an important economic trait of grape, which is determined by the composition and concentration of anthocyanins. The anthocyanin accumulation of grape berry skin is affected by light. In order to further explore the mechanisms of light regulation on anthocyanin accumulation in grape, we detected anthocyanin by UPLC-MS and performed transcriptomic analysis using red grape Vitis vinifera cv. 'Red Globe' as material. In our study, 6 kinds of anthocyanins were detected in the berry skin of 'Red Globe'. The high expression of F3'H genes and the low expression of F3'5'H genes led to the accumulation of dihydroxylated anthocyanins which account for 95% of total anthocyanins. After cluster bagging, the expression of key genes which were related to anthocyanin accumulation was down-regulated, and the concentration of total anthocyanins significantly decreased in 'Red Globe'. However, the anthocyanin composition was not changed. A series of candidate genes which were annotated as HY5, UVR8, PHY, CRY and COL may play important roles in the response and transmission of light signals in grape. And multiple transcription factors genes (1 MYB, 3 bHLH, 2 NAC and 1 ERF) were selected which may be involved in the regulation of light-induced anthocyanin accumulation in grape. The results demonstrated that 'Red Globe' is a typical light-depended grape variety whose anthocyanin synthesis in the berry skin is induced by light. Light-induced anthocyanin synthesis is a complex process involving multiple genes. This investigation provided useful insights into further studies on light-induced anthocyanin accumulation in grape berry skin.


Subject(s)
Anthocyanins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/radiation effects , Light , Plant Proteins/genetics , Vitis/growth & development , Vitis/genetics , Anthocyanins/radiation effects , Color , Vitis/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...