Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(7)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35888917

ABSTRACT

The large load loss of piezoelectricity pumps leads to fluid energy in the fluid chamber during fluid transportation. In this paper, the output performance of a piezoelectricity pump is improved by changing the structure parameters of the fluid chamber to reduce the fluid load. The mechanism of fluid flow energy loss in the body cavity of hydraulic pumps is simulated and analyzed, and the influence of the dimensions of the inlet and outlet valves and the height of the cavity on fluid energy loss is obtained. The flow rate and pressure of inlet and outlet valves with different cavity heights and different driving frequencies are obtained. The results show that the flow rate and output pressure of the hydraulic pump are optimized when the cavity height is 3 mm, and the inlet and outlet valve diameters are 2.5 mm.

2.
Scanning ; 2022: 1236270, 2022.
Article in English | MEDLINE | ID: mdl-35087611

ABSTRACT

In order to solve the problem of waste heat collection from energy consumption, a thermal energy generation device combining shape memory alloy and piezoelectric materials has been designed. The shape memory alloy is heated and deformed to drive the drive wheel continuously, and the impact wheel is deformed against the piezoelectric cantilever beam during the rotation of the drive wheel to generate electricity. In this paper, the impact force generated by the impact wheel and the output voltage of the piezoelectric cantilever beam during the rotation process are given. Finally, the experimental test shows that the larger the radius of the drive wheel, the lower the impact force of the wheel and the lower the output voltage of the piezoelectric cantilever beam; the larger the diameter of the shape memory alloy wire, the higher the impact force of the wheel and the higher the output voltage of the piezoelectric cantilever beam; the more teeth of the drive wheel, the higher the impact frequency of the piezoelectric cantilever beam and the higher the output voltage. The maximum output voltage of the thermoelectric converter is 14.2 V, when the drive wheel radius is 13 mm, the shape memory alloy wire diameter is 1 mm and the number of impact wheel teeth is 6. The new structural design provides a new structural model for waste heat recovery and thermal energy generation technology. The new structural design provides a new approach and idea for waste heat recovery and thermal energy generation technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...