Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Biomed Pharmacother ; 175: 116784, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781865

ABSTRACT

1,8-Cineole is a bicyclic monoterpene widely distributed in the essential oils of various medicinal plants, and it exhibits significant anti-inflammatory and antioxidant activities. We aimed to investigate the therapeutic effect of 1,8-cineole on anti-Alzheimer's disease by using transgenic Caenorhabditis elegans models. Our studies demonstrated that 1,8-cineole significantly relieved Aß1-42-induced paralysis and exhibited remarkable antioxidant and anti-Aß1-42 aggregation activities in transgenic nematodes CL4176, CL2006 and CL2355. We developed a 1,8-cineole/cyclodextrin inclusion complex, displaying enhanced anti-paralysis, anti-Aß aggregation and antioxidant activities compared to 1,8-cineole. In addition, we found 1,8-cineole treatment activated the SKN-1/Nrf-2 pathway and induced autophagy in nematodes. Our results demonstrated the antioxidant and anti-Alzheimer's disease activities of 1,8-cineole, which provide a potential therapeutic approach for Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals, Genetically Modified , Antioxidants , Caenorhabditis elegans , Eucalyptol , Eucalyptol/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Caenorhabditis elegans/drug effects , Antioxidants/pharmacology , Amyloid beta-Peptides/metabolism , Cyclodextrins/pharmacology , Cyclodextrins/chemistry , Peptide Fragments/pharmacology , Autophagy/drug effects , Disease Models, Animal
2.
J Nat Prod ; 87(4): 1103-1115, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38600744

ABSTRACT

Twelve new alkaloids, scolopenolines A-L (1-7, 9-11, 13, 14), along with six known analogues, were isolated from Scolopendra subspinipes mutilans, identified by analysis of spectroscopic data and quantum chemical and computational methods. Scolopenoline A (1), a unique guanidyl-containing C14 quinoline alkaloid, features a 6/6/5 ring backbone. Scolopenoline B (2) is a novel sulfonyl-containing heterodimer comprising quinoline and tyramine moieties. Scolopenoline G (7) presents a rare C12 quinoline skeleton with a 6/6/5 ring system. Alkaloids 1, 8, 10, and 15-18 display anti-inflammatory activity, while 10 and 16-18 also exhibit anti-renal-fibrosis activity. Drug affinity responsive target stability and RNA-interference assays show that Lamp2 might be a potentially important target protein of 16 for anti-renal-fibrosis activity.


Subject(s)
Alkaloids , Animals, Poisonous , Chilopoda , Animals , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Molecular Structure , Arthropods/chemistry , Fibrosis/drug therapy , Kidney/drug effects , Quinolines/pharmacology , Quinolines/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans
3.
J Agric Food Chem ; 72(17): 9746-9754, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38602331

ABSTRACT

The latex of Euphorbia peplus and its major component 20-deoxyingenol-3-angelate (DI3A) displayed significant nematicidal activity against Caenorhabditis elegans and Panagrellus redivivus. DI3A treatment inhibited the growth and development of nematodes and caused significantly negative effects on locomotion behavior, reproduction, and accumulation of reactive oxygen species. Transcriptome analysis indicated that differential expression genes in DI3A-treated C. elegans were mainly associated with the metabolism, growth, and development process, which were further confirmed by RT-qPCR experiments. The expression level of TPA-1 gene encoding a protein kinase C isotype was obviously upregulated by DI3A treatment, and knockdown of TPA-1 by RNAi technology in the nematode could relieve the growth-inhibitory effect of DI3A. Metabolic analysis indicated that DI3A was hardly metabolized by C. elegans, but a glycosylated indole derivative was specifically accumulated likely due to the activation of detoxification. Overall, our findings suggested that DI3A from E. peplus latex exerted a potent nematicidal effect through the gene TPA-1, which provides a potential target for the control of nematodes and also suggests the potential application value of E. peplus latex and DI3A as botanical nematicides.


Subject(s)
Antinematodal Agents , Caenorhabditis elegans , Euphorbia , Latex , Protein Kinase C , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/growth & development , Latex/chemistry , Latex/metabolism , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry , Antinematodal Agents/metabolism , Euphorbia/chemistry , Protein Kinase C/metabolism , Protein Kinase C/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry
4.
Org Biomol Chem ; 22(15): 3019-3024, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38530279

ABSTRACT

An unusual pyridine-containing sesterterpenoid, leucosceptrodine (1), and five new nor-leucosceptrane sesterterpenoids, including bisnor- (C23, 2), tetranor- (C21, 3) and pentanor- (C20, 4-6) skeletons, were isolated from the leaves of Tibetan Leucosceptrum canum. Their structures including their absolute configurations were determined by extensive spectroscopic analyses and quantum chemical calculations. A single crystal of one epimer (5) was crystallized from a pair of inseparable epimers, and its structure including its absolute configuration was determined by X-ray crystallographic analysis. The immunosuppressive activities of compounds 1-4 with different potencies were evaluated by inhibiting the secretion of cytokines TNF-α and IL-6 in LPS-induced RAW264.7 macrophages.


Subject(s)
Lamiaceae , Sesterterpenes , Sesterterpenes/chemistry , Tibet , Lamiaceae/chemistry , Crystallography, X-Ray , Pyridines/pharmacology , Molecular Structure
5.
J Org Chem ; 89(5): 3652-3656, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38353480

ABSTRACT

An efficient synthetic approach was developed and applied to the syntheses of four linear biosynthetic C25-precursors of leucosceptroids. The synthesis features a Julia-Kocienski olefination and a late-stage bioinspired photo-oxidation as key steps. The immunosuppressive effects of all synthetic compounds on mouse T cells and macrophage RAW264.7 were determined.


Subject(s)
Molecular Structure , Animals , Mice , Oxidation-Reduction
6.
Phytochem Anal ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191170

ABSTRACT

INTRODUCTION: Steroidal saponins characterised by intricate chemical structures are the main active components of a well-known traditional Chinese medicine (TCM) Rhizoma Paridis. The metabolic profiles of steroidal saponins in vivo remain largely unexplored, despite their renowned antitumor, immunostimulating, and haemostatic activity. OBJECTIVE: To perform a comprehensive analysis of the chemical constituents of Rhizoma Paridis total saponins (RPTS) and their metabolites in rats after oral administration. METHOD: The chemical constituents of RPTS and their metabolites were analysed using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS). RESULTS: A reliable UPLC-Q-TOF-MS/MS method was established, and a total of 142 compounds were identified in RPTS. Specifically, diosgenin-type saponins showed the diagnostic ions at m/z 415.32, 397.31, 283.25, 271.21, and 253.20, whereas pennogenin-type saponins exhibited the diagnostic ions at m/z 413.31, 395.30, and 251.20. Based on the characteristic fragments and standard substances, 15 specific metabolites were further identified in the faeces, urine, plasma, and bile of rats. The metabolic pathways of RPTS, including phase I reactions (de-glycosylation and oxidation) and phase II reactions (glucuronidation), were explored and summarised, and the enrichment of metabolites was characterised by multivariate statistical analysis. CONCLUSION: The intricate RPTS could be transformed into relatively simple metabolites in rats through de-glycosylation, which provides a reference for further metabolic studies and screening of active ingredients for TCM.

7.
Stem Cell Res Ther ; 15(1): 25, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38287398

ABSTRACT

BACKGROUND: Autologous fat grafting is hampered by unpredictable graft survival, which is potentially regulated by ferroptosis. Glutathione (GSH), a powerful antioxidant used in tissue preservation, has ferroptosis-regulating activity; however, its effects on fat grafts are unclear. This study investigated the effects and mechanisms of GSH in fat graft survival. METHODS: Human lipoaspirates were transplanted subcutaneously into the backs of normal saline-treated (control) or GSH-treated nude mice. Graft survival was evaluated by magnetic resonance imaging and histology. RNA sequencing was performed to identify differentially expressed genes and enriched pathways. GSH activity was evaluated in vitro using an oxygen and glucose deprivation (OGD) model of adipose-derived stem cells. RESULTS: Compared with control group, GSH induced better outcomes, including superior graft retention, appearance, and histological structures. RNA sequencing suggested enhanced negative regulation of ferroptosis in the GSH-treated grafts, which showed reduced lipid peroxides, better mitochondrial ultrastructure, and SLC7A11/GPX4 axis activation. In vitro, OGD-induced ferroptosis was ameliorated by GSH, which restored cell proliferation, reduced oxidative stress, and upregulated ferroptosis defense factors. CONCLUSIONS: Our study confirms that ferroptosis participates in regulating fat graft survival and that GSH exerts a protective effect by inhibiting ferroptosis. GSH-assisted lipotransfer is a promising therapeutic strategy for future clinical application.


Subject(s)
Ferroptosis , Humans , Animals , Mice , Graft Survival , Mice, Nude , Glutathione , Glucose , Dietary Supplements , Amino Acid Transport System y+
8.
J Asian Nat Prod Res ; 26(1): 78-90, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38069835

ABSTRACT

Phytochemical investigation on the aerial parts of Salvia deserta led to the isolation of eight new pentacyclic triterpenoids including three oleanane- (1 - 3) and five ursane-type (4 - 8) triterpenoids, whose structures were elucidated based on extensive spectroscopic analysis and quantum chemical calculation. Weak immunosuppressive potency was observed for compounds 1, 2, and 4 - 8 via inhibiting the secretion of cytokines TNF-α and IL-6 in LPS-induced macrophages RAW264.7 at 20 µM. In addition, compounds 1, 2, and 4 - 6 exhibited moderate protective activity on t-BHP-induced oxidative injury in HepG2 cells.


Subject(s)
Salvia , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Salvia/chemistry , Molecular Structure , Cytokines , Plant Components, Aerial/chemistry
9.
Int J Biol Macromol ; 254(Pt 3): 128046, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37956816

ABSTRACT

The packaging of fresh foods increasingly focuses on renewable and eco-friendly cellulose films, but their low dissolution efficiency and weak mechanical strength greatly limit their wide application, which also cannot be used for smart packaging. Here, a highly efficient synergistic chloride-salt dissolution method was proposed to fabricate robust, transparent, and smart cellulose films. Cellulose films with appropriate Ca2+ concentration exhibited robust mechanical strength, better thermal stability, high transparency and crystallinity. The metal chelation of Ca2+ with cellulose chains could induce cellulose chain arrangement during the cellulose regeneration process. Particularly, compared to pure cellulose films, the tensile strength and elongation at break of cellulose films with suitable Ca2+ were increased by 167 % and 200 %, respectively. Moreover, optimal cellulose films can be used to reflect the quality of the fruit by detecting changes in ethanol gas. Hence, a novel strategy is presented to fabricate robust and transparent cellulose films with great potential application for smart packaging.


Subject(s)
Cellulose , Product Packaging , Drug Packaging , Tensile Strength , Food Packaging
10.
Adv Mater ; 36(5): e2307534, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38010259

ABSTRACT

Perovskite photodetectors with bipolar photoresponse characteristics are expected to be applied in the field of secure optical communication (SOC). However, how to realize the perovskite photodetector with bipolar response remains challenging. Herein, by introducing bismuth iodide (BiI3 ) into Sn-Pb mixed perovskite precursor solution, 2D perovskite FA3 Bi2 I9 is spontaneously formed at the bottom to realize a wide-narrow bandgap-laminated perovskite film. Wavelength-dependent bipolar response is realized based on the absorption difference of the photoactive region with different bandgap combined with the carrier competition of the homotypic transport layer adopted in the as-fabricated photodetector. Under the visible/near-infrared (NIR) light irradiation, the bottom/top of the film generates a higher carrier concentration, where electrons are easier to be separated and transported by the SnO2 /PC61 BM to the bottom/top electrodes, respectively, resulting in a negative and positive bipolar response. Finally, based on positive NIR signal as the effective signal and negative visible signal as the interference signal, the SOC system is realized, where the positive NIR signal is well hidden by the negative visible signal. This work provides a simple and feasible strategy for fabrication of laminated perovskite films to achieve bipolar response.

11.
J Med Chem ; 67(1): 513-528, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38150591

ABSTRACT

Intragastric administration of the total sesterterpenoid extract (TSE) of medicinal plant Leucosceptrum canum at 2.5 g/kg dose protected mice from LPS-induced sepsis. Phytochemical investigation led to the isolation and identification of 47 leucosceptrane sesterterpenoids (1-47) including 30 new compounds (1-30) with complicated oxygenation patterns. Biological screening indicated their immunosuppressive activity via inhibiting IFN-γ secretion and/or proliferation of T cells with different potencies. Mechanism study of compounds 9, 25, and 32 revealed that they inhibited the activations of AKT-mTOR, JNK, p38 MAPK or ERK pathway in T cells and macrophages. In addition, compounds 9 and 25 induced G0/G1 cell arrest of T cells. The major component, leucosceptroid N (32), significantly lowered the levels of IL-6 and TNF-α in peripheral blood serum, and ameliorated the multiorgan damages of LPS-induced sepsis mice at 25 mg/kg dose. These findings suggest that leucosceptrane sesterterpenoids are a new type of potential immunosuppressive agents for sepsis treatment.


Subject(s)
Immunosuppressive Agents , Sepsis , Animals , Mice , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/metabolism , Lipopolysaccharides/metabolism , Macrophages/metabolism , Tumor Necrosis Factor-alpha/metabolism , Sepsis/chemically induced , Sepsis/drug therapy
12.
Acta Pharm Sin B ; 13(11): 4638-4654, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37969733

ABSTRACT

Sugar-sugar glycosyltransferases play important roles in constructing complex and bioactive saponins. Here, we characterized a series of UDP-glycosyltransferases responsible for biosynthesizing the branched sugar chain of bioactive steroidal saponins from a widely known medicinal plant Paris polyphylla var. yunnanensis. Among them, a 2'-O-rhamnosyltransferase and three 6'-O-glucosyltrasferases catalyzed a cascade of glycosylation to produce steroidal diglycosides and triglycosides, respectively. These UDP-glycosyltransferases showed astonishing substrate promiscuity, resulting in the generation of a panel of 24 terpenoid glycosides including 15 previously undescribed compounds. A mutant library containing 44 variants was constructed based on the identification of critical residues by molecular docking simulations and protein model alignments, and a mutant UGT91AH1Y187A with increased catalytic efficiency was obtained. The steroidal saponins exhibited remarkable antifungal activity against four widespread strains of human pathogenic fungi attributed to ergosterol-dependent damage of fungal cell membranes, and 2'-O-rhamnosylation appeared to correlate with strong antifungal effects. The findings elucidated the biosynthetic machinery for their production of steroidal saponins and revealed their potential as new antifungal agents.

13.
J Nat Prod ; 86(11): 2468-2473, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37939268

ABSTRACT

Three unusual sesterterpenoids featuring unprecedented rearranged colquhounane (C25) and tetranorcolquhounane (C21) frameworks, colquhounoids E (1) and F (3) and norcolquhounoid F (2), were isolated from a Lamiaceae medicinal plant Colquhounia coccinea var. mollis. Their structures were elucidated by spectroscopic analysis and quantum chemical calculations. A biomimetic inspired regioselective cyclopropane cleavage was achieved under acidic conditions. The immunosuppressive activities of these new sesterterpenoids were also evaluated.


Subject(s)
Lamiaceae , Plants, Medicinal , Spectrum Analysis , Lamiaceae/chemistry , Molecular Structure
14.
Phytochemistry ; 215: 113852, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690698

ABSTRACT

Neocinnamomum delavayi (Lauraceae) leaves with abundant oil cells are seldom attacked by insects, but their chemical constituent and biological function remain obscure. Three furofuran lignans, including (+)-eudesmin (3), (+)-magnolin (4), and demethoxyaschantin (5), were identified to be the major specialized metabolites in the oil cells of N. delavayi leaves through laser microdissection coupled with NMR analysis. Compounds 3 and 4 exhibited obvious antifeedant activity against a generalist insect Spodoptera exigua, and their natural contents in the leaves could effectively defend against generalist insects. Intriguingly, three specific metabolites 9-11, the O-demethylation derivates of compounds 3-5, were identified from a native specialist insect Dindica polyphaenaria feeding with N. delavayi leaves, implying an adaptation mechanism of specialist insects to plant defensive compounds. The results revealed a chemical connection between plants and insects, which would contribute to our understanding of plant-insect interaction and insect management.


Subject(s)
Lauraceae , Lignans , Animals , Insecta , Lignans/pharmacology , Lignans/chemistry , Spodoptera
15.
Burns Trauma ; 11: tkad020, 2023.
Article in English | MEDLINE | ID: mdl-37605780

ABSTRACT

Background: Angiogenesis is crucial in diabetic wound healing and is often impaired in diabetic foot ulcers (DFUs). Human dermal microvascular endothelial cells (HDMECs) are vital components in dermal angiogenesis; however, their functional and transcriptomic characteristics in DFU patients are not well understood. This study aimed to comprehensively analyse HDMECs from DFU patients and healthy controls and find the potential regulator of angiogenesis in DFUs. Methods: HDMECs were isolated from skin specimens of DFU patients and healthy controls via magnetic-activated cell sorting. The proliferation, migration and tube-formation abilities of the cells were then compared between the experimental groups. Both bulk RNA sequencing (bulk-seq) and single-cell RNA-seq (scRNA-seq) were used to identify RAB17 as a potential marker of angiogenesis, which was further confirmed via weighted gene co-expression network analysis (WGCNA) and least absolute shrink and selection operator (LASSO) regression. The role of RAB17 in angiogenesis was examined through in vitro and in vivo experiments. Results: The isolated HDMECs displayed typical markers of endothelial cells. HDMECs isolated from DFU patients showed considerably impaired tube formation, rather than proliferation or migration, compared to those from healthy controls. Gene set enrichment analysis (GSEA), fGSEA, and gene set variation analysis (GSVA) of bulk-seq and scRNA-seq indicated that angiogenesis was downregulated in DFU-HDMECs. LASSO regression identified two genes, RAB17 and CD200, as characteristic of DFU-HDMECs; additionally, the expression of RAB17 was found to be significantly reduced in DFU-HDMECs compared to that in the HDMECs of healthy controls. Overexpression of RAB17 was found to enhance angiogenesis, the expression of hypoxia inducible factor-1α and vascular endothelial growth factor A, and diabetic wound healing, partially through the mitogen-activated protein kinase/extracellular signal-regulated kinase signalling pathway. Conclusions: Our findings suggest that the impaired angiogenic capacity in DFUs may be related to the dysregulated expression of RAB17 in HDMECs. The identification of RAB17 as a potential molecular target provides a potential avenue for the treatment of impaired angiogenesis in DFUs.

16.
Phytochemistry ; 214: 113823, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37579813

ABSTRACT

Six undescribed clerodane diterpenoids along with five known ones were isolated from the aerial parts of Salvia deserta, a traditional Uygur medicine. Their chemical structures including absolute configurations were elucidated by extensive spectroscopic analysis (including 1D and 2D NMR, HRESIMS, and IR), combined with calculated ECD method and single-crystal X-ray diffraction analysis. All the compounds possessed a terminal α,ß-unsaturated-γ-lactone moiety, and were assayed for their immunosuppressive activity via inhibiting the secretion of cytokines TNF-α and IL-6 in macrophages RAW264.7. Among them, (5R,8R,9S,10R)-18-nor-cleroda-2,13-dien-16,15-olide-4-one obviously suppressed the secretion of TNF-α and IL-6 with IC50 values of 8.55 and 13.65 µM, respectively.


Subject(s)
Diterpenes, Clerodane , Diterpenes , Salvia , Diterpenes, Clerodane/pharmacology , Diterpenes, Clerodane/chemistry , Salvia/chemistry , Interleukin-6 , Tumor Necrosis Factor-alpha , Plant Components, Aerial/chemistry , Molecular Structure , Diterpenes/chemistry
17.
Talanta ; 265: 124806, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37364382

ABSTRACT

A modified miniaturized hydrogen flame ionization detector (m-FID) was developed and evaluated. An integrated nozzle assembly was constructed to solve the gas leakage caused by adhesive crack during repeated high-low temperature processes or vibration. An embedded sealing structure was designed to realize the face sealing, thus improving the sealing stability and reliability of the m-FID. Polyimide was employed as seal and insulation material to ensure the detector can be used at 300 °C for a long term. The hydrogen and air consumption of the m-FID was 12 mL/min and 110 mL/min, which is about 1/3 of the FID gas consumption of commercial laboratory instruments. The limit of detection (LOD) for n-hexadecane was 3.2 × 10-12 g/s, with a linear response range of nearly 5 orders of magnitude. Finally, it was installed onto an on-site gas chromatograph to detect drug samples with wide boiling point range from room temperature up to 535 °C.

18.
Article in English | MEDLINE | ID: mdl-37204956

ABSTRACT

Deep neural networks (DNNs) are vulnerable to adversarial examples, while adversarial attack models, e.g., DeepFool, are on the rise and outrunning adversarial example detection techniques. This article presents a new adversarial example detector that outperforms state-of-the-art detectors in identifying the latest adversarial attacks on image datasets. Specifically, we propose to use sentiment analysis for adversarial example detection, qualified by the progressively manifesting impact of an adversarial perturbation on the hidden-layer feature maps of a DNN under attack. Accordingly, we design a modularized embedding layer with the minimum learnable parameters to embed the hidden-layer feature maps into word vectors and assemble sentences ready for sentiment analysis. Extensive experiments demonstrate that the new detector consistently surpasses the state-of-the-art detection algorithms in detecting the latest attacks launched against ResNet and Inception neutral networks on the CIFAR-10, CIFAR-100, and SVHN datasets. The detector only has about 2 million parameters and takes less than 4.6 ms to detect an adversarial example generated by the latest attack models using a Tesla K80 GPU card.

19.
Phytochemistry ; 211: 113681, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37080413

ABSTRACT

The sesquiterpene ß-bisabolene possessing R and S configurations is commonly found in plant essential oils with antimicrobial and antioxidant activities. Here, we report the cloning and functional characterization of a (R)-ß-bisabolene synthase gene (CcTPS2) from a Lamiaceae medicinal plant Colquhounia coccinea var. mollis. The biochemical function of CcTPS2 catalyzing the cyclization of farnesyl diphosphate to form a single product (R)-ß-bisabolene was characterized through an engineered Escherichia coli producing diverse polyprenyl diphosphate precursors and in vitro enzyme assay, indicating that CcTPS2 was a high-fidelity (R)-ß-bisabolene synthase. The production of (R)-ß-bisabolene in an engineered E. coli strain harboring the exogenous mevalonate pathway, farnesyl diphosphate synthase and CcTPS1 genes was 17 mg/L under shaking flask conditions. Ultimately, 120 mg of purified (R)-ß-bisabolene was obtained from the engineered E. coli, and its structure was elucidated by detailed spectroscopic analyses (including 1D and 2D NMR, and specific rotation). Four chimeric enzymes were constructed through domain swapping, which altered the product outcome, indicating the region important for substrate and product specificity. In addition, (R)-ß-bisabolene exhibited anti-adipogenic activity in the model organism Caenorhabditis elegans and antibacterial activity selectively against Gram-positive bacteria.


Subject(s)
Alkyl and Aryl Transferases , Lamiaceae , Plants, Medicinal , Sesquiterpenes , Plants, Medicinal/metabolism , Escherichia coli/genetics , Sesquiterpenes/pharmacology , Sesquiterpenes/metabolism , Anti-Bacterial Agents/pharmacology , Lamiaceae/chemistry
20.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(2): 175-184, 2023 Apr 01.
Article in English, Chinese | MEDLINE | ID: mdl-37056183

ABSTRACT

OBJECTIVES: This study aimed to investigate how naringenin (Nar) affected the anti-inflammatory, vascula-rization, and osteogenesis differentiation of human periodontal ligament stem cells (hPDLSCs) stimulated by lipopolysaccharide (LPS) and to preliminarily explore the underlying mechanism. METHODS: Cell-counting kit-8 (CCK8), cell scratch test, and Transwell assay were used to investigate the proliferation and migratory capabilities of hPDLSCs. Alkaline phosphatase (ALP) staining, alizarin red staining, lumen-formation assay, enzyme-linked immunosorbent assay, quantitative timed polymerase chain reaction, and Western blot were used to measure the expression of osteopontin (OPN), Runt-related transcription factor 2 (RUNX2), vascular endothlial growth factor (VEGF), basic fibroblast growth factor (bFGF), von Willebrand factor (vWF), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6. RESULTS: We observed that 10 µmol/L Nar could attenuate the inflammatory response of hPDLSCs stimulated by 10 µg/mL LPS and promoted their proliferation, migration, and vascularization differentiation. Furthermore, 0.1 µmol/L Nar could effectively restore the osteogenic differentiation of inflammatory hPDLSCs. The effects of Nar's anti-inflammatory and promotion of osteogenic differentiation significantly decreased and inflammatory vascularization differentiation increased after adding AMD3100 (a specific CXCR4 inhibitor). CONCLUSIONS: Nar demonstrated the ability to promote the anti-inflammatory, vascularization, and osteogenic effects of hPDLSCs stimulated by LPS, and the ability was associated with the stromal cell-derived factor/C-X-C motif chemokine receptor 4 signaling axis.


Subject(s)
Lipopolysaccharides , Periodontal Ligament , Humans , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Chemokine CXCL12 , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Osteogenesis , Periodontal Ligament/metabolism , Receptors, Chemokine/metabolism , Stem Cells , Interleukin-8/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...