Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Int Immunopharmacol ; 133: 112075, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38663316

ABSTRACT

Cuproptosis has recently been identified as a novel regulatory mechanism of cell death. It is characterized by the accumulation of copper in mitochondria and its binding to acylated proteins. These characteristics lead to the downregulation of iron-sulfur cluster proteins and protein toxicity stress, ultimately resulting in cell death. Cuproptosis is distinct from other types of cell death, including necrosis, apoptosis, ferroptosis, and pyroptosis. Cu induces oxidative stress damage, protein acylation, and the oligomerization of acylated TCA cycle proteins. These processes lead to the downregulation of iron-sulfur cluster proteins and protein toxicity stress, disrupting cellular Cu homeostasis, and causing cell death. Cuproptosis plays a significant role in the development and progression of various kidney diseases such as acute kidney injury, chronic kidney disease, diabetic nephropathy, kidney transplantation, and kidney stones. On the one hand, inducers of cuproptosis, such as disulfiram (DSF), chloroquinolone, and elesclomol facilitate cuproptosis by promoting cell oxidative stress. In contrast, inhibitors of Cu chelators, such as tetraethylenepentamine and tetrathiomolybdate, relieve these diseases by inhibiting apoptosis. To summarize, cuproptosis plays a significant role in the pathogenesis of kidney disease. This review comprehensively discusses the molecular mechanisms underlying cuproptosis and its significance in kidney diseases.


Subject(s)
Copper , Kidney Diseases , Humans , Copper/metabolism , Copper/toxicity , Animals , Kidney Diseases/metabolism , Oxidative Stress , Chelating Agents/therapeutic use , Chelating Agents/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects
2.
Anal Bioanal Chem ; 416(6): 1469-1483, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38236393

ABSTRACT

This paper describes the simple and label-free detection of thrombin using optical fiber surface plasmon resonance (SPR) sensors based on gold films prepared by the cost-effective method of electroless plating. The plating conditions for simultaneously obtaining gold film on cylindrical core and end surfaces of an optical fiber suitable for measurement were optimized. The fabricated sensor exhibited a linear refractive index sensitivity of 2150 nm/RIU and 7.136 (a.u.)/RIU in the refractive index of 1.3329-1.3605 interrogated by resonance wavelength and amplitude methods respectively and a single wavelength monitoring method was proposed to investigate the sensing performance of this sensor. Polyadenine diblock and thiolated thrombin aptamers were immobilized on gold nanoparticles and gold films respectively to implement a sandwich optical fiber assay for thrombin. The developed optical fiber SPR sensors were successfully used in the determination of thrombin down to 0.56 nM over a wide range from 2 to 100 nM and showed good selectivity for thrombin, which indicated their potential clinical applications for biomedical samples.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Surface Plasmon Resonance/methods , Optical Fibers , Biosensing Techniques/methods , Gold , Thrombin
3.
Medicine (Baltimore) ; 102(20): e33829, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37335694

ABSTRACT

Osteoporosis (OP) is one of the major public health problems in the world. However, the biomarkers between the peripheral blood mononuclear cells (PBMs) and bone tissue for prognosis of OP have not been well characterized. This study aimed to explore the similarities and differences of the gene expression profiles between the PBMs and bone tissue and identify potential genes, transcription factors (TFs) and hub proteins involved in OP. The patients were enrolled as an experimental group, and healthy subjects served as normal controls. Human whole-genome expression chips were used to analyze gene expression profiles from PBMs and bone tissue. And the differentially expressed genes (DEGs) were subsequently studied using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. The above DEGs were constructed into protein-protein interaction network. Finally, TF-DEGs regulation networks were constructed. Microarray analysis revealed that 226 DEGs were identified between OP and normal controls in the PBMs, while 2295 DEGs were identified in the bone tissue. And 13 common DEGs were obtained by comparing the 2 tissues. The Gene Ontology analysis indicated that DEGs in the PBMs were more involved in immune response, while DEGs in bone were more involved in renal response and urea transmembrane transport. And the Kyoto Encyclopedia of Genes and Genomes analysis indicated almost all of the pathways in the PBMs were overlapped with those in the bone tissue. Furthermore, protein-protein interaction network presented 6 hub proteins: PI3K1, APP, GNB5, FPR2, GNG13, and PLCG1. APP has been found to be associated with OP. Finally, 5 key TFs were identified by TF-DEGs regulation networks analysis (CREB1, RUNX1, STAT3, CREBBP, and GLI1) and were supposed to be associated with OP. This study enhanced our understanding of the pathogenesis of OP. PI3K1, GNB5, FPR2, GNG13, and PLCG1 might be the potential targets of OP.


Subject(s)
Bone and Bones , Gene Expression , Leukocytes, Mononuclear , Osteoporosis , Humans , Bone and Bones/pathology , Gene Expression Profiling , Leukocytes, Mononuclear/pathology , Osteoporosis/genetics , Osteoporosis/pathology , Genetic Markers
4.
Biomed Pharmacother ; 163: 114830, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37150036

ABSTRACT

Recently, cuproptosis has been demonstrated to be a new non-apototic cell death mode that is characterized by copper dependence and the regulation of mitochondrial respiration. Cuproptosis is distinct from known cell death modes such as apoptosis, necrosis, pyroptosis, or ferroptosis. Excessive copper induces cuproptosis by promoting protein toxic stress reactions via copper-dependent anomalous oligomerization of lipoylation proteins in the tricarboxylic acid (TCA) cycle and reducing iron-sulfur cluster protein levels. Ferredoxin1 (FDX1) promotes dihydrolipoyl transacetylase (DLAT) lipoacylation and abates iron-sulfur cluster proteins by reducing Cu2+ to Cu+, inducing cell death. Copper homeostasis depends on the copper transporter, and disturbances to this homeostasis cause cuproptosis. Recent evidence has shown that cuproptosis plays a significant role in the occurrence and development of many cardiovascular diseases, such as myocardial ischemia/reperfusion (I/R) injury, heart failure, atherosclerosis, and arrhythmias. Copper chelators, such as ammonium tetrathiomolybdate(VI) and DL-Penicillamine, may ease the above cardiovascular diseases by inhibiting the cuproptosis pathway. Oxidative phosphorylation inhibitors may inhibit cuproptosis by inhibiting protein stress response. In conclusion, cuproptosis plays an essential role in cardiovascular disease pathogenesis. Inhibition of cardiovascular cuproptosis is expected to become a potential treatment. Here, we will thoroughly review the molecular mechanisms involved in cuproptosis and its significance in cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Heart Failure , Humans , Copper , Apoptosis , Sulfur , Iron
5.
Pathogens ; 12(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36839498

ABSTRACT

Yersinia enterocolitica is a zoonotic proto-microbe that is widespread throughout the world, causes self-limiting diseases in humans or animals and even leads to sepsis and death in patients with severe cases. In this study, a real-time recombinase polymerase amplification (RPA) assay for pathogenic Y. enterocolitica was established based on the ail gene. The results showed that the RPA detection for Y. enterocolitica could be completed within 20 min at an isothermal temperature of 38 °C by optimizing the conditions in the primers and Exo probe. Moreover, the sensitivity of the current RT-RPA was 10-4 ng/µL, and the study found that the assay was negative in the application of the genomic DNA of other pathogens. These suggest the establishment of a rapid and sensitive real-time RPA method for the detection of pathogenic Y. enterocolitica, which can provide new understandings for the early diagnosis of the pathogens.

6.
BMC Complement Med Ther ; 22(1): 333, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36522793

ABSTRACT

BACKGROUND: Gushukang (GSK) capsules are a Chinese patented medicine that is widely used in clinics for the treatment of osteoporosis (OP). Animal experiments have revealed that the bone mineral density of osteoporotic rats increase after treatment with GSK capsules. However, the specific mechanism and target of GSK in the treatment of osteoporosis are unclear. Further studies are needed. METHODS: Metabolomics (GC/MS) and proteomics (TMT-LC-MC/MC) with bioinformatics (KEGG pathway enrichment), correlation analysis (Pearson correlation matrix), and joint pathway analysis (MetaboAnalyst) were employed to determine the underlying mechanisms of GSK. The differential expression proteins were verified by WB experiment. RESULTS: The regulation of proteins, i.e., Cant1, Gstz1, Aldh3b1, Bid, and Slc1a3, in the common metabolic pathway of differential proteins and metabolites between GSK/OP and OP/SHAM was corrected in the GSK group. The regulation of 12 metabolites (tyramine, thymidine, deoxycytidine, cytosine, L-Aspartate, etc.) were differential in the common enrichment metabolic pathway between GSK /OP and OP/SHAM. Differential proteins and metabolites jointly regulate 11 metabolic pathways, such as purine metabolism, pyrimidine metabolism, histidine metabolism, beta-alanine metabolism, and so on. CONCLUSION: GSK may protect bone metabolism in osteoporotic rats by affecting nucleotide metabolism, amino acid metabolism, and the immune system.


Subject(s)
Osteoporosis , Proteomics , Animals , Rats , Glutathione Transferase , Metabolomics , Osteoporosis/drug therapy
8.
Front Pharmacol ; 13: 841410, 2022.
Article in English | MEDLINE | ID: mdl-35370724

ABSTRACT

The molecular mechanism underlying the protective role of propofol against myocardial ischemia/reperfusion (I/R) injury remains poorly understood. Previous studies have shown that ferroptosis is an imperative pathological process in myocardial I/R injury. We hypothesized that propofol prevents myocardial I/R injury by inhibiting ferroptosis via the AKT/p53 signaling pathway. The ferroptosis-inducing agent erastin (E) and AKT inhibitor MK2206 (MK) were used to investigate the role of propofol in myocardial I/R injury. H9C2 cells treated without any reagents, erastin for 24 h, propofol for 1 h before adding erastin were assigned as the control (C), E, and E + P group, respectively. Cell viability, reactive oxygen species (ROS), and the expression of antioxidant enzymes, including ferritin heavy chain 1 (FTH1), cysteine/glutamate transporter (XCT), and glutathione peroxidase 4 (GPX4) in H9C2 cells. Rat hearts from the I/R + P or I/R groups were treated with or without propofol for 20 min before stopping perfusion for 30 min and reperfusion for 60 min. Rat hearts from the I/R + P + MK or I/R + MK groups were treated with or without propofol for 20 min, with a 10-min treatment of MK2206 before stopping perfusion. Myocardial histopathology, mitochondrial structure, iron levels, and antioxidant enzymes expression were assessed. Our results demonstrated that erastin increased H9C2 cell mortality and reduced the expression of antioxidant enzymes. I/R, which reduced the expression of antioxidant enzymes and increased iron or p53 (p < 0.05), boosted myocardium pathological and mitochondrion damage. Propofol inhibited these changes; however, the effects of propofol on I/R injury were antagonized by MK (p < 0.05). In addition, AKT siRNA inhibited the propofol-induced expression of antioxidant enzymes (p < 0.05). Our findings confirm that propofol protects myocardium from I/R injury by inhibiting ferroptosis via the AKT/p53 signal pathway.

9.
J Cell Commun Signal ; 16(1): 75-92, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34101112

ABSTRACT

Numb (Nb) and Numb-like (Nbl) are functionally redundant adaptor proteins that critically regulate cell fate and morphogenesis in a variety of organs. We selectively deleted Nb and Nbl in testicular germ cells by breeding Nb/Nbl floxed mice with a transgenic mouse line Tex101-Cre. The mutant mice developed unilateral or bilateral cystic dilation in the rete testis (RT). Dye trace indicated partial blockages in the testicular hilum. Morphological and immunohistochemical evaluations revealed that the lining epithelium of the cysts possessed similar characteristics of RT epithelium, suggesting that the cyst originated from dilation of the RT lumen. Spermatogenesis and the efferent ducts were unaffected. In comparisons of isolated germ cells from mutants to control mice, the Notch activity considerably increased and the expression of Notch target gene Hey1 significantly elevated. Further studies identified that germ cell Fgf4 expression negatively correlated the Notch activity and demonstrated that blockade of FGF receptors mediated FGF4 signaling induced enlargement of the RT lumen in vitro. The crucial role of the FGF4 signaling in modulation of RT development was verified by the selective germ cell Fgf4 ablation, which displayed a phenotype similar to that of germ cell Nb/Nbl null mutant males. These findings indicate that aberrant over-activation of the Notch signaling in germ cells due to Nb/Nbl abrogation impairs the RT development, which is through the suppressing germ cell Fgf4 expression. The present study uncovers the presence of a lumicrine signal pathway in which secreted/diffusible protein FGF4 produced by germ cells is essential for normal RT development.

10.
PLoS One ; 16(12): e0261355, 2021.
Article in English | MEDLINE | ID: mdl-34969048

ABSTRACT

Complex boundary conditions are the major influencing factors of coal caving law in the pseudo-inclined working face. The main purpose of this study is to analyze coal caving law of flexible shield support and then to establish the internal relations among coal caving parameters under complex boundary conditions. Firstly, the law of coal caving in different falling modes is simulated physically. Secondly, the coal caving shape, displacement field, and contact force field is simulated. Then, coal caving law and process parameters is analyzed theoretically. Finally, the test was performed in Bai-Ji Mine. The research shows that ellipsoidal ore drawing theory has universal applicability in coal drawing law analysis and parameter optimization. After the Isolated Extraction Zone and Isolated Movement Zone reach the roof, the expansion speed is marked by a short delay, and then, while expanding to the floor, two butted incomplete ellipsoids are formed. There is a time-space difference in coal caving after the support, and some coal will be mined in the next round of coal caving. There are obvious differences in the coal loosening range, displacement field, and contact force field on both sides of the long axis. When the support falls along with the bottom plate, it is more conducive to the release of coal. The test shows that the research is of great significance for optimizing the caving parameters of flexible shield support in the pseudo-inclined working face of the steep seam.


Subject(s)
Coal Mining/instrumentation , Coal Mining/methods , Coal , Caves , China , Computer Simulation , Models, Theoretical , Normal Distribution , Reproducibility of Results
11.
Front Pharmacol ; 12: 722907, 2021.
Article in English | MEDLINE | ID: mdl-34733156

ABSTRACT

Mechanical ventilation is an indispensable life-support treatment for acute respiratory failure in critically ill patients, which is generally believed to involve uncontrolled inflammatory responses. Oxytocin (OT) has been reported to be effective in animal models of acute lung injury. However, it is not clear whether Oxytocin has a protective effect on ventilator-induced lung injury (VILI). Therefore, in this study, we aimed to determine whether OT can attenuate VILI and explore the possible mechanism of this protection. To this end, a mouse VILI model was employed. Mice were pretreated with OT 30 min before the intraperitoneal injection of saline or nigericin and ventilation for 4 h, after which they were euthanized. Pathological changes, lung wet/dry (W/D) weight ratio, myeloperoxidase (MPO) activity, the levels of inflammatory cytokines [i.e., interleukin (IL)-1ß, IL-6, and IL-18] in lung tissues and bronchoalveolar lavage fluid (BALF), and expression of NLRP3, Toll-like receptor 4 (TLR4), caspase-1, nuclear factor (NF)-κB, and GSDMD in lung tissues were measured. OT treatment could reduce pathological injury, the W/D ratio, and MPO activity in VILI mice. Our data also indicated that OT administration alleviated the expression of TLR4/My-D88 and the activation of NF-κB, NLRP3, and caspase-1 in lung tissues from the VILI mice model. Furthermore, OT also decreased the levels of IL-1ß, IL-6, and IL-18 in the bronchoalveolar lavage fluid. Moreover, the OT administration may alleviate the activation of GSDMD partially through its effects on the NLRP3-mediated pathway. Collectively, OT exerted a beneficial effect on VILI by downregulating TLR4-and NLRP3-mediated inflammatory pathways.

12.
Anal Chim Acta ; 1183: 338988, 2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34627518

ABSTRACT

An electrochemical biosensor for determination of DNA is developed based on T7 exonuclease-assisted regulatory strand displacement dual recycling signal amplification strategy. First, the hairpin probe recognized and bound the target DNA to form a double strand nucleotide structure, and then the T7 exonuclease was introduced. After be digested by T7 exonuclease, the target DNA was released and entered the next cycle of T7 exonuclease-assisted recycle amplification, while accompanied by a large number of mimic targets (output DNAs) into another cycle. Second, the mimic target reacted with double-chain substrated DNA (CP) by a regulated toehold exchange mechanism, yielding the product complex of detection probes with the help of assisted DNA (S). Finally, after many cycles, a large number of detection probes were produced for binding numerous streptavidin-alkaline phosphatases. The electrochemical biosensor showed very high sensitivity and selectivity with a dynamic response ranged from 0.1 fM to 10 pM with a detection limit of 31.6 aM. Furthermore, this proposed biosensor was successfully applied to the detection of target DNA in 20% diluted serum. The developed strategy has been demonstrated to have the potential for application in molecular diagnostics.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , DNA/genetics , Exodeoxyribonucleases
13.
Front Pharmacol ; 12: 655726, 2021.
Article in English | MEDLINE | ID: mdl-34054535

ABSTRACT

Both hydrogen peroxide (H2O2, H) and ischemia/reperfusion (I/R) can damage cardiomyocytes, which was inhibited by propofol (P). The present research was designed to examine whether propofol can reduce myocardial I/R injury by activating protein kinase C (PKC)/nuclear factor erythroid-2-related factor 2 (NRF2) pathway in H9C2 cells and rat Langendorff models. H9C2 cells were disposed of no reagents (C), H2O2 for 24 h (H), propofol for 1 h before H2O2 (H+P), and chelerythrine (CHE, PKC inhibitor) for 1 h before propofol and H2O2 (H+P+CHE). N = 3. The PKC gene of H9C2 was knocked down by siRNA and overexpressed by phorbol 12-myristate 13-acetate (PMA, PKC agonist). The cell viability and the expressions of PKC, NRF2, or heme oxygenase-1(HO-1) were evaluated. Propofol significantly reduced H9C2 cell mortality induced by H2O2, and significantly increased NRF2 nuclear location and HO-1 expression, which were restrained by siRNA knockout of PKC and promoted by PMA. Rat hearts were treated with KrebsHenseleit solution for 120 min (C), with (I/R+P) or without (I/R) propofol for 20 min before stopping perfusion for 30 min and reperfusion for 60 min, and CHE for 10 min before treated with propofol. N = 6. The levels of lactate dehydrogenase (LDH), superoxide dismutase (SOD), and creatine kinase-MB (CK-MB) in perfusion fluid and antioxidant enzymes in the myocardium were assessed. I/R, which increased LDH and CK-MB expression and reduced SOD expression, boosted the pathological damage and infarcts of the myocardium after reperfusion. However, propofol restrained all these effects, an activity that was antagonized by CHE. The results suggest that propofol pretreatment protects against I/R injury by activating of PKC/NRF2 pathway.

14.
PeerJ ; 9: e10860, 2021.
Article in English | MEDLINE | ID: mdl-33604195

ABSTRACT

An increasing body of research has revealed that social behavior shapes the animal gut microbiome community and leads to the similarity among the same social group. However, some additional factors (e.g., diet and habitat within each social group) may also contribute to this similarity within the social group and dissimilarity between social groups. Here, we investigated the potential correlation between social behavior and the gut microbiome community in 179 musk deer from four breeding regions in the Maerkang Captive Center, Sichuan. The dominant gut microbiome phyla in the musk deer in this study were Firmicutes, Bacteroidetes, and Proteobacteria. We found significant effects on the alpha and beta diversity of the gut microbiome due to the breeding regions. The similarity within breeding regions was higher than that between the breeding regions. Due to their solitary lifestyle, captive musk deer are raised in single cages with no direct social contact most of the time. Deer in all of the breeding regions have the same diet and similar living conditions. However, during each mating season from November to January, in each region, one adult male and about six adult females will be put together into a large cage. Social behavior happens during cohabitation, including mating behavior, grooming within the same sex or between different sexes, and other social contact. Therefore, we speculated that high similarity within the breeding region might be associated with the social behavior during the mating season. This was a simple and straightforward example of the relationship between animal social behavior and the gut microbiome.

15.
BMC Musculoskelet Disord ; 22(1): 62, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33430863

ABSTRACT

BACKGROUND: Recent research has suggested that cardiotrophin-like cytokine factor 1 (CLCF1) may be an important regulator of bone homeostasis. Furthermore, a whole gene chip analysis suggested that the expression levels of CLCF1 in the peripheral blood mononuclear cells (PBMCs) were downregulated in postmenopausal women with osteoporosis. This study aimed to assess whether the expression levels of CLCF1 in PBMCs can reflect the severity of bone mass loss and the related fracture risk. METHODS: In all, 360 postmenopausal women, aged 50 to 80 years, were included in the study. A survey to evaluate the participants' health status, measurement of bone mineral density (BMD), routine blood test, and CLCF1 expression level test were performed. RESULTS: Based on the participants' bone health, 27 (7.5%), 165 (45.83%), and 168 (46.67%) participants were divided into the normal, osteopenia, and osteoporosis groups, respectively. CLCF1 protein levels in the normal and osteopenia groups were higher than those in the osteoporosis group. While the CLCF1 mRNA level was positively associated with the BMD of total femur (r = 0.169, p = 0.011) and lumbar spine (r = 0.176, p = 0.001), the protein level was positively associated with the BMD of the lumbar spine (r = 0.261, p < 0.001), femoral neck (r = 0.236, p = 0.001), greater trochanter (r = 0.228, p = 0.001), and Ward's triangle (r = 0.149, p = 0.036). Both the mRNA and protein levels were negatively associated with osteoporosis development (r = - 0.085, p = 0.011 and r = - 0.173, p = 0.014, respectively). The association between CLCF1 protein level and fracture risk was not significant after adjusting for BMD. CONCLUSIONS: To our knowledge, this is the first clinical study to show that CLCF1 expression levels in the PBMCs of postmenopausal women can reflect the amount of bone mass or the severity of bone mass loss.


Subject(s)
Cytokines , Osteoporosis, Postmenopausal , Osteoporosis , Absorptiometry, Photon , Aged , Aged, 80 and over , Bone Density , Female , Humans , Leukocytes, Mononuclear , Middle Aged , Osteoporosis/epidemiology , Osteoporosis/genetics , Osteoporosis, Postmenopausal/diagnostic imaging , Osteoporosis, Postmenopausal/epidemiology , Postmenopause
16.
Anal Chim Acta ; 1141: 21-27, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33248654

ABSTRACT

At present, alpha fetoprotein (AFP) is mainly used as a serum marker of primary Hepatocellular carcinoma. A simple, enzyme-free sensing strategy is introduced for highly sensitive fluorescence detection of AFP. This detection strategy is based on aptamer recognition and mismatched catalytic hairpin assembly (MCHA). At first, Trigger is locked by aptamer before the introduction of AFP in this aptamer-MCHA system. The aptamer preferentially combines with AFP via powerful attraction in the presence of AFP. This results in the release of trigger and initiation of MCHA cycle, thus forming the H1 and H2 double chain complexes (denoted as H1@H2). Finally, H1@H2 and double chain structure containing fluorophore and its quenched group- BHQ1 (denoted as F@Q) initiated displacement reaction, which caused double chain separation and fluorescence recovery. This assay produces a wide detection range, which is from 0.1 ng mL-1 to 10 µg mL-1 and the limit of detection as 0.033 ng mL-1. The whole detection process was performed at 37 °C for 60 min. In addition, this assay had high anti-interference ability and could be used to detect AFP in clinical serum. This novel AFP detection strategy is able to screen of Hepatocellular carcinoma.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/diagnosis , Humans , Limit of Detection , Liver Neoplasms/diagnosis , alpha-Fetoproteins
17.
Anal Methods ; 12(45): 5496-5502, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33150889

ABSTRACT

Carcinoembryonic antigen (CEA) is a disease biomarker, which can reflect the existence of tumors. The accurate detection of CEA in clinical samples is highly valuable for diagnosis of tumors. Herein, we developed an enzyme-free fluorescent biosensor for highly sensitive detection of CEA based on an aptamer-induced entropy-driven circuit. The aptamer hairpin specifically bound to CEA to expose the locked domain. Then, the exposed domain could trigger disassembly of multiple fluorophore strands from the three-strand complexes with the aid of fuel strands, leading to the production of remarkable amplified fluorescent signals. The one-step and homogeneous method exhibited high specificity and a wide linear range from 10 pg mL-1 to 500 ng mL-1 with a low limit of detection of 4.2 pg mL-1. What's more, the whole detection process could be performed within 45 min and did not involve the use of any protein enzymes and antibodies. The developed strategy could also be applied to detect CEA in clinical samples with satisfactory results. Therefore, the strategy is an alternative sensing method for the detection of CEA.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Carcinoembryonic Antigen , Entropy , Fluorescent Dyes
18.
Br J Anaesth ; 125(6): 1034-1044, 2020 12.
Article in English | MEDLINE | ID: mdl-32943192

ABSTRACT

BACKGROUND: Sevoflurane may reduce the occurrence of major adverse cardiovascular events (MACCEs) in surgical patients, although the mechanisms are poorly understood. We hypothesised that sevoflurane stabilises atherosclerotic plaques by inhibiting inflammation and enhancing prolyl-4-hydroxylase α1 (P4Hα1), the rate-limiting subunit for the P4H enzyme essential for collagen synthesis. METHODS: We established a vulnerable arterial plaque model in apolipoprotein E-knockout mice (ApoE-/-) fed a high-fat diet that underwent daily restraint/noise stress, with/without a single prior exposure to sevoflurane for 6 h (1-3%; n=30 per group). In vitro, smooth muscle cells (SMCs) were incubated with tumour necrosis factor-alpha in the presence/absence of sevoflurane. Immunohistochemistry, immunoblots, and mRNA concentrations were used to quantify the effect of sevoflurane on plaque formation, expression of inflammatory cytokines, P4Hα1, and collagen subtypes in atherosclerotic plaques or isolated SMCs. RESULTS: In ApoE-/- mice, inhalation of sevoflurane 1-3% for 6 h reduced the aortic plaque size by 8-29% in a dose-dependent manner, compared with control mice that underwent restraint stress alone (P<0.05); this was associated with reduced macrophage infiltration and lower lipid concentrations in plaques. Sevoflurane reduced gene transcription and protein expression levels of pro-inflammatory cytokines (≥69-75%; P<0.05) and matrix metalloproteinases (≥39-65%; P<0.05) at both gene transcription and protein levels, compared with controls. Sevoflurane dose dependently increased Types I and III collagen deposition through enhanced protein expression of P4Hα1, both in vivo and in vitro (0.7-3.3-fold change; P<0.05). CONCLUSIONS: Sevoflurane dose dependently promotes plaque stabilisation and decreases the incidence of plaque disruption in ApoE-/- mice by increasing collagen deposition and inhibiting inflammation. These mechanisms may contribute to sevoflurane reducing MACCE.


Subject(s)
Anesthetics, Inhalation/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Apolipoproteins E/genetics , Collagen/metabolism , Plaque, Atherosclerotic/drug therapy , Sevoflurane/therapeutic use , Animals , Cells, Cultured , Diet, High-Fat , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/drug effects , Procollagen-Proline Dioxygenase/genetics , Procollagen-Proline Dioxygenase/metabolism , Stress, Psychological/physiopathology
19.
Fish Shellfish Immunol ; 93: 66-72, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31306758

ABSTRACT

In the present study, a sialic acid-binding lectin was identified and characterized from Manila clam Ruditapes philippinarum (designed as RpSABL-1). Multiple alignments strongly suggested that RpSABL-1 was a new member of the sialic acid-binding lectin family. In non-stimulated clams, RpSABL-1 transcripts were constitutively expressed in all five tested tissues, especially in hepatopancreas. After Vibrio anguillarum challenge, the expression of RpSABL-1 mRNA was significantly up-regulated at 6 h (P < 0.05), 12 h (P < 0.01) and 24 h (P < 0.01). Recombinant RpSABL-1 protein (rRpSABL-1) displayed apparent binding activities towards lipopolysaccharides (LPS) and peptidoglycan (PGN), but not to glucan or chitin in vitro. Coinciding with the PAMPs binding assay, rRpSABL-1 exhibited obvious agglutination activities against Gram-positive bacterium Staphyloccocus aureus, Gram-negative bacteria Escherichia coli, V. anguillarum and Vibrio harveyi. Meanwhile, rRpSABL-1 showed antibacterial activities against E. coli, and biofilm formation of E. coli could also be inhibited after incubated with rRpSABL-1. Moreover, the encapsulation, phagocytosis and chemotactic ability of hemocytes could be enhanced by rRpSABL-1. All these results suggested that RpSABL-1 could function as a pattern recognition receptor with versatile functions in the innate immune responses of R. philippinarum.


Subject(s)
Bivalvia/genetics , Bivalvia/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Lectins/genetics , Lectins/immunology , Amino Acid Sequence , Animals , Escherichia coli/physiology , Gene Expression Profiling , Lectins/chemistry , Phylogeny , Sequence Alignment , Staphylococcus aureus/physiology , Vibrio/physiology
20.
Mikrochim Acta ; 185(9): 433, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30155673

ABSTRACT

An electrochemical biosensor for determination of DNA is described that is based on the reaction of regulated DNA (reg-DNA) first with substrated DNA (subs-DNA) to form a reaction intermediate. The intermediate binds target DNA (T) by hybridization and initiates a branch migration leading to the production of complex of substrated DNA and target DNA (TC). Once TC is produced, it reacts with assisted DNA (ass-DNA) through a toehold exchange mechanism, yielding the product complex of substrated DNA and assisted DNA (CS). The target is then released back into the solution and and catalyzes the next cycle of toehold-exchange with the reaction intermediate of substrated DNA and regulated DNA (CPR). Unlike in a conventional DNA toehold that is hardwired with the branch migration domain, the allosteric DNA toehold is designed into a reg-DNA which is independent of the branch migration domain. Under the optimal experimental conditions and at a working potential as low as 0.18 V, response to DNA is linear in the 1 fM to 1000 pM concentration range, and the detection limit is 0.83 fM. The assay is highly specific and can discriminate target DNA even from a single-base mismatch. It was applied to the analysis of DNA spiked plasma samples. Graphical abstract Schematic illustration of the electrochemical strategy for target DNA detection based on regulation of DNA strand displacement using an allosteric DNA toehold strategy. It can be used to analyze DNA-spiked plasma samples and has a low detection limit of 0.83 fM.


Subject(s)
Biosensing Techniques/methods , DNA Probes/chemistry , DNA/analysis , DNA/chemistry , Allosteric Regulation , Base Sequence , DNA/blood , DNA Probes/genetics , Electrochemistry , Electrodes , Humans , Limit of Detection , Nucleic Acid Hybridization
SELECTION OF CITATIONS
SEARCH DETAIL
...