Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Hortic Res ; 9: uhac216, 2022.
Article in English | MEDLINE | ID: mdl-36479586

ABSTRACT

Cinnamomum species attract attentions owing to their scents, medicinal properties, and ambiguous relationship in the phylogenetic tree. Here, we report a high-quality genome assembly of Cinnamomum camphora, based on which two whole-genome duplication (WGD) events were detected in the C. camphora genome: one was shared with Magnoliales, and the other was unique to Lauraceae. Phylogenetic analyses illustrated that Lauraceae species formed a compact sister clade to the eudicots. We then performed whole-genome resequencing on 24 Cinnamomum species native to China, and the results showed that the topology of Cinnamomum species was not entirely consistent with morphological classification. The rise and molecular basis of chemodiversity in Cinnamomum were also fascinating issues. In this study, six chemotypes were classified and six main terpenoids were identified as major contributors of chemodiversity in C. camphora by the principal component analysis. Through in vitro assays and subcellular localization analyses, we identified two key terpene synthase (TPS) genes (CcTPS16 and CcTPS54), the products of which were characterized to catalyze the biosynthesis of two uppermost volatiles (i.e. 1,8-cineole and (iso)nerolidol), respectively, and meditate the generation of two chemotypes by transcriptional regulation and compartmentalization. Additionally, the pathway of medium-chain triglyceride (MCT) biosynthesis in Lauraceae was investigated for the first time. Synteny analysis suggested that the divergent synthesis of MCT and long-chain triglyceride (LCT) in Lauraceae kernels was probably controlled by specific medium-chain fatty acyl-ACP thioesterase (FatB), type-B lysophosphatidic acid acyltransferase (type-B LPAAT), and diacylglycerol acyltransferase 2b (DGAT 2b) isoforms during co-evolution with retentions or deletions in the genome.

2.
Life (Basel) ; 12(10)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36295009

ABSTRACT

The cold-resistant mechanism of yellow kiwifruit associated with gene regulation is poorly investigated. In this study, to provide insight into the causes of differences in low-temperature tolerance and to better understand cold-adaptive mechanisms, we treated yellow tetraploid kiwifruit 'SWFU03' tissue culture plantlets at low temperatures, used these plantlets for transcriptome analysis, and validated the expression levels of ten selected genes by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. A number of 1630 differentially expressed genes (DEGs) were identified, of which 619 pathway genes were up-regulated, and 1011 were down-regulated in the cold treatment group. The DEGs enriched in the cold tolerance-related pathways mainly included the plant hormone signal transduction and the starch and sucrose metabolism pathway. RT-qPCR analysis confirmed the expression levels of eight up-regulated genes in these pathways in the cold-resistant mutants. In this study, cold tolerance-related pathways (the plant hormone signal transduction and starch and sucrose metabolism pathway) and genes, e.g., CEY00_Acc03316 (abscisic acid receptor PYL), CEY00_Acc13130 (bZIP transcription factor), CEY00_Acc33627 (TIFY protein), CEY00_Acc26744 (alpha-trehalose-phosphate synthase), CEY00_Acc28966 (beta-amylase), CEY00_Acc16756 (trehalose phosphatase), and CEY00_Acc08918 (beta-amylase 4) were found.

3.
Front Plant Sci ; 13: 920604, 2022.
Article in English | MEDLINE | ID: mdl-35795350

ABSTRACT

An experiment was conducted from 2016 to 2017 to assess the effect of kernel metabolism in development stages after organic mulching compared to control. Organic mulching significantly increased crop yields (higher 128% in 2016, higher 60% in 2017), oil content (the highest oil content was 27.6% higher than that of the control), and improved soil properties (SOC, SAN, AP, and AK). In this study, soil pH, SOC, AN, AP, and AK in 0-30 cm soil depth were measured. Results showed that the effect of mulching on soil pH was not significant at the harvesting stage. The greatest metabolic differences occurred during the period of high oil conversion (S2-S4), primarily involving 11 relevant metabolic pathways. This further verified that Camellia oleifera oil yield was improved after mulching. A total of 1,106 OTUs were detected by using 16S rRNA, and Venn diagram showed that there were 106 unique OTUs in control and 103 OTUs in the treatment, respectively. Correlation analysis showed that soil pH and soil temperature were two indicators with the most correlations with soil microbiota. The yield was significantly positively correlated with soil microbial Proteobacteria, Bacteroidetes, and soil nutrition indexes. Organic mulching improved the physicochemical properties of soils, caused differences in the relative abundance of dominant bacteria in soil bacteria, and improved the soil microbiological environment to promote plant growth, indicating that organic mulching is an effective measure to alleviate seasonal drought.

4.
BMC Genomics ; 22(1): 617, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34388974

ABSTRACT

BACKGROUND: Chestnut seeds are important kinds of edible nuts rich in starch and protein. The characteristics and nutrient contents of chestnut have been found to show obvious metaxenia effects in previous studies. To improve the understanding of the effect of metaxenia on chestnut starch and sucrose metabolism, this study used three varieties of chestnut, 'Yongfeng 1', 'YongRen Zao' and 'Yimen 1', as male parents to pollinate the female parent, 'Yongfeng 1', and investigated the mechanisms of starch and sucrose metabolism in three starch accumulation stages (70 (S1), 82 (S2), and 94 (S3) days after pollination, DAP) in chestnut seed kernels. RESULT: Most carbohydrate metabolism genes were highly expressed in YFF (self-pollinated 'Yongfeng 1') in stage S2 and in YFR ('Yongfeng 1' × 'Yongren Zao') and YFM ('Yongfeng 1' × 'Yimen 1') in stage S3. In stage S3, hub genes encoding HSF_DNA-binding, ACT, Pkinase, and LIM proteins and four transcription factors were highly expressed, with YFF showing the highest expression, followed by YFR and YFM. In addition, transcriptome analysis of the kernels at 70, 82 and 94 DAP showed that the starch granule-bound starch synthase (EC 2.4.1.242) and ADP-glucose pyrophosphorylase (EC 2.7 .7.27) genes were actively expressed at 94 DAF. Chestnut seeds regulate the accumulation of soluble sugars, reducing sugars and starch by controlling glycosyl transferase and hydrolysis activity during development. CONCLUSION: These results and resources have important guiding significance for further research on starch and sucrose metabolism and other types of metabolism related to chestnut metaxenia.


Subject(s)
Starch , Transcriptome , Carbohydrate Metabolism , China , Female , Gene Expression Profiling , Gene Expression Regulation, Plant , Humans , Male , Starch/metabolism
5.
Mitochondrial DNA B Resour ; 6(7): 1890-1892, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34151010

ABSTRACT

Machilus robusta W. W. Smith is an evergreen plant distributed in the Yangtze River Basin and the south regions of China. Here we analyzed the complete chloroplast (cp) genome sequence of M. robusta to determine its structure and evolutionary relationship to other Lauraceae. The cp genome is 152,737 bp in length and has an overall GC content of 39.2% The genome includes a large single-copy (LSC) region of 93,706 bp and a small single-copy (SSC) region of 18,885 bp, and these are separated by a pair of inverted repeats (IRs) of 20,073 bp. The cp genome contains 128 genes, including 83 protein-coding, 37 tRNAs, and 8 rRNAs. Phylogenetic analysis based on complete cp genome sequences fully resolved M. robusta in a clade with M. balansae. This work provides new molecular data for evolutionary studies of the Lauraceae.

6.
R Soc Open Sci ; 6(11): 191052, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31827844

ABSTRACT

Actinidia chinensis is a commercially important fruit, and tetraploid breeding of A. chinensis is of great significance for economic benefit. In order to obtain elite tetraploid cultivars, tetraploid plants were induced by colchicine treatment with leaves of diploid A. chinensis 'SWFU03'. The results showed that the best treatment was dipping leaves 30 h in 60 mg l-1 colchicine solutions, with induction rate reaching 26%. Four methods, including external morphology comparison, stomatal guard cell observation, chromosome number observation and flow cytometry analysis were used to identify the tetraploid of A. chinensis. Using the induction system and flow cytometry analysis methods, 187 tetraploid plants were identified. Three randomly selected tetraploid plants and their starting diploid plants were further subjected to transcriptome analysis, real-time quantitative polymerase chain reaction (RT-qPCR) and methylation-sensitive amplification polymorphism (MSAP) analysis. The transcriptome analysis results showed that there were a total of 2230 differentially expressed genes (DEG) between the diploid and tetraploid plants, of which 660 were downregulated and 1570 upregulated. The DEGs were mainly the genes involved in growth and development, stress resistance and antibacterial ability in plants. RT-qPCR results showed that the gene expression levels of the growth and stress resistance of tetraploid plants were higher than those of diploid ones at the transcriptome level. MSAP analysis of DNA methylation results showed that tetraploid plants had lower methylation ratio than diploid ones. The present results were valuable to further explore the epigenetics of diploid and tetraploid kiwifruit plants.

7.
Neurosci Bull ; 24(3): 143-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18500386

ABSTRACT

OBJECTIVE: To investigate changes of autophagy after traumatic brain injury (TBI) and its possible role. METHODS: Rat TBI model was established by controlled cortical injury system. Autophagic double membrane structure was detected by transmission electronic microscope. Microtubule-associated protein 1 light chain 3 (LC3) and Beclin 1 were also used to investigate the activation of autophagy post-TBI. Double labeling with LC3 and caspase-3, or Beclin 1 and Fluoro-Jade to show the relationship between autophagy and apoptosis or neuron degeneration after TBI. RESULTS: An increase of autophagic double membrane structure was observed in early stage (1 h), and the increase lasted for at least 32 d post-TBI. LC3 and Beclin 1 proteins also began to elevate at 1 h time point post-TBI in neurons, 3 d later in astrocytes, and peaked at about 8 d post-TBI. In both cell types, LC3 and Beclin 1 maintained at a high level until 32 d post-TBI. Most LC3 and Beclin 1 positive cells were near the side (including hippocampus), but not in the core of the injury. In addition, in the periphery of the injury site, not all caspase-3 positive (+) cells merged with LC3 (+) cells post-TBI; In hippocampal area, almost all Beclin 1 (+) neurons did not merge with Fluoro-Jade (+) neurons from 1 h to 48 h post-TBI. CONCLUSION: Autophagy is activated and might protect neurons from degeneration at early stage post-TBI and play a continuous role afterwards in eliminating aberrant cell components.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Autophagy , Brain Injuries/metabolism , Brain/metabolism , Cytoprotection , Nerve Degeneration/metabolism , Animals , Astrocytes/metabolism , Astrocytes/pathology , Beclin-1 , Brain/pathology , Brain Injuries/pathology , Brain Injuries/physiopathology , Caspase 3/metabolism , Cell Membrane/metabolism , Cell Membrane/pathology , Disease Models, Animal , Fluoresceins , Fluorescent Antibody Technique , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/physiopathology , Male , Microscopy, Electron, Transmission , Microtubule-Associated Proteins/metabolism , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Neurons/metabolism , Neurons/pathology , Organic Chemicals , Rats , Rats, Sprague-Dawley , Time Factors , Up-Regulation
8.
Fa Yi Xue Za Zhi ; 22(6): 404-6, 410, 2006 Dec.
Article in Chinese | MEDLINE | ID: mdl-17285857

ABSTRACT

OBJECTIVE: To study the expression of cathepsin-B and -D in different time point after traumatic brain injury. METHODS: Traumatic brain injury (TBI) model was established on rats, cathepsin-B and cathepsin-D immunofluorescence staining and confocal microscope analysis were performed. Positive cells were counted by confocal microscope and image analysis techniques were used to determine the morphological changes in each group. RESULTS: Immunofluorescence staining results showed that cathepsin-B was activated 1 hour after TBI while cathepsin-D was not activated until 12hour after TBI. Both of them got to their peak during 4 to 8days, and kept a high level of activating 32days after TBI. Cathepsin-B and -D positive cells did not merge with caspase-3 positive cells until 6 h after TBI. CONCLUSION: Cathepsin-B and -D could be the diagnostic markers of TBI and can estimating time course of lateral TBI. They blocked caspase-3 activation at the beginning period after TBI and started to promote cell death with caspase-3 6 h after TBI.


Subject(s)
Brain Injuries/metabolism , Brain/metabolism , Caspase 3/metabolism , Cathepsin B/metabolism , Cathepsin D/metabolism , Animals , Brain/pathology , Brain Injuries/pathology , Disease Models, Animal , Forensic Pathology , Hippocampus/metabolism , Hippocampus/pathology , Immunohistochemistry , Lysosomes , Male , Neurons/enzymology , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...