Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Front Neurosci ; 18: 1387752, 2024.
Article in English | MEDLINE | ID: mdl-38707590

ABSTRACT

Objectives: To summarize development processes and research hotspots of infrared imaging technology research on acupuncture and to provide new insights for researchers in future studies. Methods: Publications regarding infrared imaging technology in acupuncture from 2008 to 2023 were downloaded from the Web of Science Core Collection (WoSCC). VOSviewer 1.6.19, CiteSpace 6.2.R4, Scimago Graphica, and Microsoft Excel software were used for bibliometric analyses. The main analyses include collaboration analyses between countries, institutions, authors, and journals, as well as analyses on keywords and references. Results: A total of 346 publications were retrieved from 2008 to 2023. The quantity of yearly publications increased steadily, with some fluctuations over the past 15 years. "Evidence-Based Complementary and Alternative Medicine" and "American Journal of Chinese Medicine" were the top-cited journals in frequency and centrality. China has the largest number of publications, with the Shanghai University of Traditional Chinese Medicine being the most prolific institution. Among authors, Litscher Gerhard from Austria (currently Swiss University of Traditional Chinese Medicine, Switzerland) in Europe, was the most published and most cited author. The article published by Rojas RF was the most discussed among the cited references. Common keywords included "Acupuncture," "Near infrared spectroscopy," and "Temperature," among others. Explore the relationship between acupoints and temperature through infrared thermography technology (IRT), evaluate pain objectively by functional near-infrared spectroscopy (fNIRS), and explore acupuncture for functional connectivity between brain regions were the hotspots and frontier trends in this field. Conclusion: This study is the first to use bibliometric methods to explore the hotspots and cutting-edge issues in the application of infrared imaging technology in the field of acupuncture. It offers a fresh perspective on infrared imaging technology research on acupuncture and gives scholars useful data to determine the field's hotspots, present state of affairs, and frontier trends.

2.
Article in English | MEDLINE | ID: mdl-38715256

ABSTRACT

An increased risk of target organ damage (TOD) has been reported in patients with primary aldosteronism (PA). However, there is relatively little related research on the correlation between the degree of TOD and those with and without PA in newly diagnosed hypertensive patients. The aim of this study was to assess the association between PA and TOD among patients with newly diagnosed hypertension. Newly diagnosed hypertensive patients were consecutively recruited from January 2015 to June 2020 at the University of Hong Kong-Shenzhen Hospital. Patients were stratified into those with and without PA. Data for left ventricular mass index (LVMI), carotid intima-media thickness (CIMT) and plaque, and microalbuminuria were systematically collected. A total of 1044 patients with newly diagnosed hypertension were recruited, 57 (5.5%) of whom were diagnosed with PA. Patients with PA had lower blood pressure, serum lipids, body mass index, and plasma renin activity and a higher incidence of hypokalemia than those without PA. In contrast, the prevalence of left ventricular hypertrophy, increased CIMT, and microalbuminuria was higher in patients with PA than in those without PA. Multivariable regression analysis demonstrated that PA was independently associated with increased LVMI, CIMT and microalbuminuria. Among patients with newly diagnosed hypertension, those with PA had more severe TOD, including a higher LVMI, CIMT and microalbuminuria, than those without PA. These findings emphasize the need for screening TOD in newly diagnosed hypertension due to underlying PA.

3.
Zhen Ci Yan Jiu ; 49(5): 499-505, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764121

ABSTRACT

OBJECTIVES: To observe the effect of mind-regulating acupuncture on pain intensity, sleep quality, negative emotion in patients with postherpetic neuralgia (PHN), and evaluate the clinical effect of mind-regulating acupuncture combined with surrounding needling and heavy moxibustion at Ashi points (Extra) in treatment of PHN. METHODS: The patients with PHN were randomly divided into a control group (35 cases, 2 cases dropped out) and a comprehensive therapy group (35 cases). The patients in the control group were treated with surrounding needling and heavy moxibustion at Ashi points. In the comprehensive therapy group, the mind-regulating acupuncture therapy was delivered besides the treatment as the control group. The treatment was given once daily, one course of treatment was composed of 6 days and 2 courses were required in the 2 groups. Before and after treatment, the pain conditions were assessed using pain rating index (PRI), visual analogue scale (VAS) and present pain intensity (PPI), the negative emotions were assessed using Hamilton anxiety scale (HAMA) and Hamilton depression scale (HAMD), and the sleep quality with Pittsburgh sleep quality index (PSQI). One week before and one week after treatment, the average sleep time was recorded. The therapeutic effect of 2 groups was evaluated. The effective cases of 2 groups were followed up in 2 months after treatment completion and the recurrence of neuralgia was recorded. RESULTS: There were no statistical differences in the above indicators between the 2 groups before treatment. After 2 courses of treatment, the scores of PRI, VAS, PPI, HAMA, HAMD and PSQI were reduced when compared with those before treatment in the patients of the 2 groups (P<0.05), and the average sleep time was increased (P<0.05). The scores of PRI, VAS, PPI, HAMA, HAMD and PSQI in the comprehensive therapy group, as well as the average sleep time were all improved when compared with those of the control group (P<0.05). The total effective rate in the comprehensive therapy group (34/35, 97.14%) was higher than that of the control group (27/33, 81.82%, P<0.05) and the recurrence rate was lower (ï¼»2/34, 5.88%ï¼½vsï¼»8/27, 29.63%ï¼½, P<0.05). CONCLUSIONS: The combination of mind-regulating acupuncture with surrounding needling and heavy moxibustion at Ashi acupoint can effectively relieve PHN. Compared with the traditional surrounding acupuncture in pain area combined with moxibustion at Ashi points, this comprehensive therapy is more effective for ameliorating pain intensity, improving sleep quality and reducing negative emotions. It is also effective for declining the recurrence.


Subject(s)
Acupuncture Therapy , Neuralgia, Postherpetic , Sleep Quality , Humans , Neuralgia, Postherpetic/therapy , Neuralgia, Postherpetic/psychology , Male , Middle Aged , Female , Aged , Pilot Projects , Treatment Outcome , Emotions , Adult , Acupuncture Points
4.
Infect Med (Beijing) ; 3(1): 100095, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38586543

ABSTRACT

The COVID-19 pandemic has created unprecedented challenges worldwide. Artificial intelligence (AI) technologies hold tremendous potential for tackling key aspects of pandemic management and response. In the present review, we discuss the tremendous possibilities of AI technology in addressing the global challenges posed by the COVID-19 pandemic. First, we outline the multiple impacts of the current pandemic on public health, the economy, and society. Next, we focus on the innovative applications of advanced AI technologies in key areas such as COVID-19 prediction, detection, control, and drug discovery for treatment. Specifically, AI-based predictive analytics models can use clinical, epidemiological, and omics data to forecast disease spread and patient outcomes. Additionally, deep neural networks enable rapid diagnosis through medical imaging. Intelligent systems can support risk assessment, decision-making, and social sensing, thereby improving epidemic control and public health policies. Furthermore, high-throughput virtual screening enables AI to accelerate the identification of therapeutic drug candidates and opportunities for drug repurposing. Finally, we discuss future research directions for AI technology in combating COVID-19, emphasizing the importance of interdisciplinary collaboration. Though promising, barriers related to model generalization, data quality, infrastructure readiness, and ethical risks must be addressed to fully translate these innovations into real-world impacts. Multidisciplinary collaboration engaging diverse expertise and stakeholders is imperative for developing robust, responsible, and human-centered AI solutions against COVID-19 and future public health emergencies.

5.
Zookeys ; 1197: 197-213, 2024.
Article in English | MEDLINE | ID: mdl-38666072

ABSTRACT

A new species of gekkonid, Hemiphyllodactylusgengmaensissp. nov., is described based on six specimens from Gengma Dai and Wa Autonomous County, Yunnan, China. The new species can be distinguished from its congeners by a significant genetic divergence of greater than 9.7% in the mitochondrial ND2 gene and a combination of the following characters: a maximum SVL of 43.24mm; 8 or 9 chin scales; six circumnasal scales; 2 or 3 internasal scales; 9-11 supralabial scales; 8 or 9 infralabial scales; 11-18 dorsal scales; 8-10 ventral scales; a manual lamellar formula of 5-5-5-4 or 5-6-5-4 and a pedal lamellar formula of 5-5-6-5; 20-25 precloacal and femoral pore-bearing scales contiguous in males; dark postorbital stripes or striping on body; dark dorsal transverse blotches present; and a brown postsacral mark bearing anteriorly projecting arms. The discovery of this new species brings the number of Hemiphyllodactylus species in China to 15.

6.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339188

ABSTRACT

The silkworm (Bombyx mori) has served humankind through silk protein production. However, traditional sericulture and the silk industry have encountered considerable bottlenecks and must rely on major technological breakthroughs to keep up with the current rapid developments. The adoption of gene editing technology has nevertheless brought new hope to traditional sericulture and the silk industry. The long period and low efficiency of traditional genetic breeding methods to obtain high silk-yielding silkworm strains have hindered the development of the sericulture industry; the use of gene editing technology to specifically control the expression of genes related to silk gland development or silk protein synthesis is beneficial for obtaining silkworm strains with excellent traits. In this study, BmEcKL1 was specifically knocked out in the middle (MSGs) and posterior (PSGs) silk glands using CRISPR/Cas9 technology, and ΔBmEcKL1-MSG and ΔBmEcKL1-PSG strains with improved MSGs and PSGs and increased silk production were obtained. This work identifies and proves that BmEcKL1 directly or indirectly participates in silk gland development and silk protein synthesis, providing new perspectives for investigating silk gland development and silk protein synthesis mechanisms in silkworms, which is of great significance for selecting and breeding high silk-yielding silkworm varieties.


Subject(s)
Bombyx , Animals , Bombyx/metabolism , Silk/metabolism , CRISPR-Cas Systems/genetics , Gene Editing , Insect Proteins/genetics , Insect Proteins/metabolism
7.
Chin J Integr Med ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212497

ABSTRACT

BACKGROUND: Postherpetic neuralgia (PHN) is the most common complication of herpes zoster infection and affects patients' quality of life. Acupuncture therapy is regarded as a competitive method of treatment for analgesia. OBJECTIVE: To summarize evidence from systematic reviews (SRs) and evaluate the effectiveness and safety of different acupuncture therapies for treating PHN. METHODS: Eight electronic databases were searched from their inception to August 5, 2022, including 4 international electronic databases (PubMed, EMBASE, the Cochrane Library, and Web of Science) and 4 Chinese databases (Chinese Biomedical Database, China National Knowledge Infrastructure, VIP Database and Wanfang Database). Methodological quality was assessed by A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR 2). The Risk of Bias in Systematic Review (ROBIS) tool was used to assess the risk of bias in SRs. Evidence level was assessed by the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. RESULTS: Totally, 7 SRs were included, including 128 studies and 9,792 patients. In AMSTAR 2, most of the SRs were of low or critically low levels since they had more than 1 critical deficiency. In ROBIS, 1 SR (14.29%) was rated as high risk, and the other 6 (85.71%) were rated as low risk. In the GRADE system, 9 outcomes (28.13%) were valued as high level, 5 (15.63%) as moderate level, 1 (3.13%) as low, and 17 (53.13%) as very low. In the effectiveness of acupuncture therapy, the group "moxibustion vs. original medical treatment" [mean difference (MD)=-1.44, 95% confidence interval (CI): -1.80 to -1.08, I2=99%, P<0.00001] was of the highest heterogeneity and the group "bloodletting vs. original medical treatment" (MD=-2.80, 95% CI: -3.14 to -2.46, I2=0, P<0.00001) was of the lowest heterogeneity. Six SRs have reported the safety of their studies and no serious events were shown in the treatment and control groups. CONCLUSIONS: Acupuncture therapy seems to be effective in treating PHN. Despite the evidence that suggested the advantages of acupuncture therapy in relieving pain and promoting efficacy and safety, the methodological quality was quite low. Further studies should pay more attention to the quality of original studies and evidence for SRs to confirm these findings. (PROSPERO registration No. CRD42022344790).

8.
J Musculoskelet Neuronal Interact ; 23(3): 346-354, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37654220

ABSTRACT

OBJECTIVE: To explore the expression of miR-31 and Satb2 gene in the serum of postmenopausal women with osteoporosis (OP). METHODS: 97 postmenopausal women with OP and 100 healthy women were selected as research subjects. MSCs were purchased from Shanghai Zhong Qiao Xin Zhou Biotechnology Co., Ltd. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated, identified and transfected, and then quantified by alkaline phosphatase (ALP) levels. The expression levels of miR-31 and Satb2 gene mRNA were determined by qRT-PCR. The proteins of RUNX2, OCN and BMP and Wnt/ß-catenin pathway-related proteins (GSK-3, Frizzled 1, Lrp5, Lrp6 and ß-catenin) were tested by Western blotting. RESULTS: In the OP group, the relative expression of miR-31 was 3.61±0.54, significantly higher than that (1.75±0.27) in the healthy control group (t=9.422, P<0.001). The relative expression of mRNA of Satb2 gene was 0.86±0.12, significantly lower than that (1.35±0.21) in the healthy control group (t=5.897, P<0.001). CONCLUSIONS: The increase in miR-31 expression can down-regulate the Wnt/ß-catenin pathway by targeting the expression of Satb2 gene, thereby inhibiting the osteogenic differentiation of BMSCs. This provides an important reference for further understanding the mechanism of OP and identifying targets for early diagnosis and treatment.


Subject(s)
MicroRNAs , beta Catenin , Humans , Female , Wnt Signaling Pathway/genetics , Bone Marrow , Glycogen Synthase Kinase 3 , Osteogenesis/genetics , China , Cell Differentiation , MicroRNAs/genetics
9.
Int J Biol Macromol ; 253(Pt 4): 126677, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37717874

ABSTRACT

In our previous study, we found that cassava cyanogenic glycosides had an acute health risk. Therefore, to solve this problem, the improvement of specific degradation of cyanogenic glycosides of cassava linamarase during processing is the key. In this study, the catalytic activity and thermal stability of enzymes were screened before investigating the degradation efficiency of cyanogenic glycosides with a cassava linamarase mutant K263P-T53F-S366R-V335C-F339C (CASmut) -controlled technique. The CASmut was obtained with the optimum temperature of 45 °C, which was improved by 10 °C. The specific activity of CASmut was 85.1 ± 4.6 U/mg, which was 2.02 times higher than that of the wild type. Molecular dynamics simulation analysis and flexible docking showed there were more hydrogen bonding interactions at the pocket, and the aliphatic glycoside of the linamarin was partially surrounded by hydrophobic residues. The optimum conditions of degradation reactions was screened with CASmut addition of 47 mg/L at 45 °C, pH 6.0. The CASmut combined with ultrasonication improved the degradation from 478.2 ± 10.4 mg/kg to 86.7 ± 7.4 mg/kg. Those results indicating the great potential of CASmut in applying in the cassava food or cyanogenic food. However, challenges in terms of the catalytic mechanism research is worthy of being noticed in further studies.


Subject(s)
Manihot , Manihot/chemistry , Glycosides/metabolism , Vegetables , Mutation
10.
Poult Sci ; 102(10): 102939, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37562130

ABSTRACT

The problem of rapid decline in egg production performance and poor egg quality is a key obstacle to improving the economic benefits of laying hens. Garcinol is an antioxidant polyphenol plant extract that has multiple physiological functions. Diets with the appropriate amount of garcinol might be able to improve the performance traits and health of late laying hens. Therefore, this study was conducted to evaluate the utilization of garcinol in late laying hens. A total of 400 healthy 59-wk-old Tingfen No. 6 hens were randomly allocated into 4 dietary treatment groups and fed a basal diet supplemented with 0, 100, 300, and 500 mg/kg garcinol for 12 wk, denoted the Con, LG, MG, and HG groups, respectively. The results showed that the addition of garcinol in the diet tended to increase the egg production rate compared with that of the control group (P = 0.080), while the average egg weight was significantly lower (P < 0.05) during the whole period of the experiment. The results showed that MG group hens had higher egg quality and strengthened antioxidant capacity in their serum (P < 0.05). Moreover, the laying hens in the MG group had significantly decreased crypt depth (CD) and increased villus height (VH) in the jejunum and ileum (P < 0.05), as well as an increased ratio of VH to CD (P < 0.05) and increased expression levels of Occludin (P < 0.05) and Claudin-2 (P < 0.05) in the jejunum to improve intestinal barrier function. In addition, dietary supplementation with garcinol influenced the cecal microbiota of laying hens, which was characterized by changes in the microbial community composition, including increased abundances of Firmicutes, Romboutsia, and Ruminococcus torques. In conclusion, dietary 300 mg/kg garcinol supplementation could increase the egg production and egg quality of late laying hens, which may be attributed to the antioxidant effects of garcinol and the improvement of intestinal morphology and epithelial barrier function as well as the regulation of mucosal immune status by altering microbial composition.


Subject(s)
Antioxidants , Chickens , Animals , Female , Antioxidants/metabolism , Chickens/physiology , Intestines , Dietary Supplements , Diet/veterinary , Animal Feed/analysis
11.
Molecules ; 28(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37446632

ABSTRACT

Plant flavonoids have attracted increasing attention as new antimicrobial agents or adjuvants. In our previous work, it was confirmed that the cell membrane is the major site of plant flavonoids acting on the Gram-positive bacteria, which likely involves the inhibition of the respiratory chain. Inspired by the similar structural and antioxidant characters of plant flavonoids to hydro-menaquinone (MKH2), we deduced that the quinone pool is probably a key target of plant flavonoids inhibiting Gram-positive bacteria. To verify this, twelve plant flavonoids with six structural subtypes were preliminarily selected, and their minimum inhibitory concentrations (MICs) against Gram-positive bacteria were predicted from the antimicrobial quantitative relationship of plant flavonoids to Gram-positive bacteria. The results showed they have different antimicrobial activities. After their MICs against Staphylococcus aureus were determined using the broth microdilution method, nine compounds with MICs ranging from 2 to 4096 µg/mL or more than 1024 µg/mL were eventually selected, and then their MICs against S. aureus were determined interfered with different concentrations of menaquinone-4 (MK-4) and the MKs extracted from S. aureus. The results showed that the greater the antibacterial activities of plant flavonoids were, the more greatly their antibacterial activities decreased along with the increase in the interfering concentrations of MK-4 (from 2 to 256 µg/mL) and the MK extract (from 4 to 512 µg/mL), while those with the MICs equal to or more than 512 µg/mL decreased a little or remained unchanged. In particular, under the interference of MK-4 (256 µg/mL) and the MK extract (512 µg/mL), the MICs of α-mangostin, a compound with the greatest inhibitory activity to S. aureus out of these twelve plant flavonoids, increased by 16 times and 8 to 16 times, respectively. Based on the above, it was proposed that the quinone pool is a key target of plant flavonoids inhibiting Gram-positive bacteria, and which likely involves multiple mechanisms including some enzyme and non-enzyme inhibitions.


Subject(s)
Anti-Infective Agents , Flavonoids , Flavonoids/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Staphylococcus aureus , Gram-Positive Bacteria , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Quinones/pharmacology , Gram-Negative Bacteria
12.
Chaos ; 33(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37459220

ABSTRACT

In this paper, we study the dynamics of a Lotka-Volterra model with an Allee effect, which is included in the predator population and has an abstract functional form. We classify the original system as a slow-fast system when the conversion rate and mortality of the predator population are relatively low compared to the prey population. In comparison to numerical simulation results that indicate at most three limit cycles in the system [Sen et al., J. Math. Biol. 84(1), 1-27 (2022)], we prove the uniqueness and stability of the slow-fast limit periodic set of the system in the two-scale framework. We also discuss canard explosion phenomena and homoclinic bifurcation. Furthermore, we use the enter-exit function to demonstrate the existence of relaxation oscillations. We construct a transition map to show the appearance of homoclinic loops including turning or jump points. To the best of our knowledge, the homoclinic loop of fast slow jump slow type, as classified by Dumortier, is uncommon. Our biological results demonstrate that under certain parameter conditions, population density does not change uniformly, but instead presents slow-fast periodic fluctuations. This phenomenon may explain sudden population density explosions in populations.


Subject(s)
Ecosystem , Models, Biological , Animals , Population Dynamics , Predatory Behavior , Computer Simulation
13.
Cells ; 12(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-37296649

ABSTRACT

PURPOSE: Inducible Slc4a11 KO leads to corneal edema by disruption of the pump and barrier functions of the corneal endothelium (CE). The loss of Slc4a11 NH3-activated mitochondrial uncoupling leads to mitochondrial membrane potential hyperpolarization-induced oxidative stress. The goal of this study was to investigate the link between oxidative stress and the failure of pump and barrier functions and to test different approaches to revert the process. METHODS: Mice which were homozygous for Slc4a11 Flox and Estrogen receptor -Cre Recombinase fusion protein alleles at 8 weeks of age were fed Tamoxifen (Tm)-enriched chow (0.4 g/Kg) for 2 weeks, and controls were fed normal chow. During the initial 14 days, Slc4a11 expression, corneal thickness (CT), stromal [lactate], Na+-K+ ATPase activity, mitochondrial superoxide levels, expression of lactate transporters, and activity of key kinases were assessed. In addition, barrier function was assessed by fluorescein permeability, ZO-1 tight junction integrity, and cortical cytoskeleton F-actin morphology. RESULTS: Tm induced a rapid decay in Slc4a11 expression that was 84% complete at 7 days and 96% complete at 14 days of treatment. Superoxide levels increased significantly by day 7; CT and fluorescein permeability by day 14. Tight junction ZO-1 distribution and the cortical cytoskeleton were disrupted at day 14, concomitant with decreased expression of Cldn1, yet with increased tyrosine phosphorylation. Stromal lactate increased by 60%, Na+-K+ ATPase activity decreased by 40%, and expression of lactate transporters MCT2 and MCT4 significantly decreased, but MCT1 was unchanged at 14 days. Src kinase was activated, but not Rock, PKCα, JNK, or P38Mapk. Mitochondrial antioxidant Visomitin (SkQ1, mitochondrial targeted antioxidant) and Src kinase inhibitor eCF506 significantly slowed the increase in CT, with concomitant decreased stromal lactate retention, improved barrier function, reduced Src activation and Cldn1 phosphorylation, and rescued MCT2 and MCT4 expression. CONCLUSIONS: Slc4a11 KO-induced CE oxidative stress triggered increased Src kinase activity that resulted in perturbation of the pump components and barrier function of the CE.


Subject(s)
Corneal Edema , Symporters , Mice , Animals , src-Family Kinases/metabolism , Superoxides/metabolism , Antioxidants , Mice, Knockout , Lactates , Fluoresceins , Adenosine Triphosphatases/metabolism , Anion Transport Proteins/metabolism
14.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37357763

ABSTRACT

The present study was conducted to investigate the effects of extrusion, fermentation, and enzymolysis of palm kernel cake on processing quality of pellet feed, nutrient digestibility, and intestinal microbiota of pigs. First, the pretreatment parameters of extrusion, enzymolysis, and fermentation of palm kernel cake were optimized. Then, PKC after three processing techniques were used to prepare pellet feed. A total of 160 crossbred piglets (Duroc × Landrace × Yorkshire) with an average body weight of 28 ±â€…0.5 kg were used in an 8-wk feeding experiment. Pigs were randomly assigned to five treatments with four replicates per treatment and eight pigs per replicates. The five experimental groups were as follows: basal diet group (whole corn-soybean meal), 10% PKC group (PKC), 10% extrusion PKC group (PPKC), 10% enzymolysis PKC group (EPKC), and 10% fermented PKC group (FPKC), respectively. At the end of the experiment, four pigs from each treatment (randomly collected one pig per pen) were sacrificed by administering a pentobarbital overdose, the gut and blood samples were collected for the quantification analysis of microbiota, hematological parameters, and apparent total tract nutrient digestibility. The results showed that all three processing techniques significantly decreased the contents of crude fiber of PKC (P < 0.01), pulverization rate (P < 0.01), powder content (P < 0.01), and increased the hardness and gelatinization starch of pellet feed (P < 0.05) compared to PKC group. In addition, PPKC significantly improved the dry matter, crude protein, and ether extract content, blood indices and average daily feed intake compared to PKC group (P < 0.01), while the parameters were similar among FPKC, EPKC, and control group (P > 0.01). Furthermore, all three processing techniques significantly increased the Lactobacillus and decreased the Escherichia levels in feces or gut compared to PKC. Collectively, extrusion, fermentation, and enzymolysis of PKC had positively enhanced the pellet quality, growth performance, nutrient digestibility, and gut microbiota, extrusion exhibited a superior feeding effect compared to fermentation and enzymolysis.


Palm kernel cake (PKC) has lower nutritional value compared with soybean meal, cottonseed meal, and rapeseed meal, but its cost advantage is great, and it has been gradually used in the ruminant feeding. Due to its high crude fiber content, the processing technique applied to the PKC has a significant impact on its effectiveness. However, the different processing techniques of PKC on pellet quality, and performance of pigs have been poorly reported. The present study was conducted to investigate the effects of extrusion, fermentation, and enzymolysis pretreatment of PKC on processing quality of pellet feed, nutrient digestibility (in vivo), and intestinal microbiota of growing­finishing pigs. This study provides the optimal processing parameters of the three processing techniques, and demonstrated that PKC after processing could significantly improve the pellet quality, performance, and intestinal microbiota of growing­finishing pigs, while extrusion exhibited a superior feeding effect compared to fermentation and enzymolysis.


Subject(s)
Gastrointestinal Microbiome , Swine , Animals , Digestion , Animal Feed/analysis , Diet/veterinary , Nutrients
15.
Plant Physiol Biochem ; 201: 107860, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37385031

ABSTRACT

Karst ecosystems are becoming increasingly problematic, and high calcium is one of the main characteristics of soils in rocky desertification areas. Chlorophyll fluorescence is one of the most important indicators of the extent to which plants are affected by their environment. There are few reports on the effects of changes in exogenous calcium levels on the chlorophyll fluorescence properties of Fraxinus malacophylla seedlings. In the present study, we investigated the growth, chlorophyll fluorescence properties and antioxidant system of Fraxinus malacophylla seedlings in response to exogenous calcium (as the concentrations of 0, 25, 50, 75 mmol L-1). The results showed that Ca2+ concentration (25-50 mmol L-1) treatment mainly promoted the growth, biomass accumulation, root activity, and chlorophyll synthesis and effect on chlorophyll fluorescence in Fraxinus malacophylla; the developed root system became a strong linking hub for calcium adaptation. In addition, the activities of the antioxidant enzymes peroxidase (POD) and catalase (CAT) are upregulated and play an important role in preventing excessive oxidative damage. OJIP test parameters changed significantly with the addition of exogenous calcium, and parameters related to each photosystem II (PSII) reaction centre, such as ABS/RC and DIo/RC, increased significantly in the OJIP test, with enhanced function of the PSII electron donor lateral oxygen evolution complex. In conclusion, the addition of exogenous calcium (25-50 mmol L-1) had an important protective effect on the photosynthetic mechanism of Fraxinus malacophylla, promoting photosynthesis, better growth and better adaptability.


Subject(s)
Antioxidants , Fraxinus , Antioxidants/metabolism , Chlorophyll , Calcium/pharmacology , Seedlings , Ecosystem , Fluorescence , Photosynthesis
16.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37184888

ABSTRACT

The present study was conducted to assess the effect of different processing techniques of broken rice on processing quality of pellet feed, growth performance, nutrient digestibility, blood biochemical parameters, and fecal microbiota of weaned piglets. A total of 400 crossbred piglets (Duroc × Landrace × Yorkshire) with a mean initial body weight (BW) of 7.24 ±â€…0.52 kg were used in a 28-d experiment. Piglets were randomly distributed to one of 4 treatment and 10 replicate pens per treatment, with 10 piglets per pen. The dietary treatments were as follows: CON, corn as the main cereal type in the dietary; BR, 70% of the corn replaced by broken rice; ETBR, 70% of the corn replaced by extruded broken rice; EPBR, 70% of the corn replaced by expanded broken rice. Extruded broken rice and expanded broken rice supplementation significantly (P < 0.05) increased hardness, pellet durability index, crispness, and starch gelatinization degree. Extruded broken rice and expanded broken rice generated a higher (P < 0.05) average daily feed intake, increased (P < 0.05) average daily gain, decreased (P < 0.05) feed conversion ratio, and lowered (P < 0.05) the diarrhea rate. Piglets fed extruded broken rice displayed high apparent total tract digestibility levels of dry matter (P < 0.05), gross energy (P < 0.05), crude protein (P < 0.05), and organic matter (P < 0.05). In addition, extruded broken rice and expanded broken rice supplementation had increased Lactobacillus and Bifidobacterium levels in gut, whereas a lower abundance of the potential pathogens Clostridium_sensu_strictio_1 and Streptococcus was observed. Dietary supplementation of extruded broken rice and expanded broken rice failed to show significant effects on blood biochemical parameters. Combined, 70% corn substituted with broken rice failed to show significant effects. Collectively, extruded broken rice and expanded broken rice supplementation had positively enhanced the pellet quality, growth performance, nutrient digestibility, and gut microbiota of weaned piglets.


Weaned piglets represent a critical phase in animal husbandry, and with the rising demand for meat, the consumption of animal feed has surged. Corn, a vital constituent of animal feed, has been consumed at an accelerated pace. In this regard, the use of broken rice as an alternative to corn is a feasible solution. Nevertheless, due to the incomplete development of piglets' bodies, higher quality feed is necessary. The processing technique applied to the feed has a significant impact on its effectiveness. Thus, we experimented to assess the effect of different processing techniques on the feed efficiency of weaning piglets, substituting corn with broken rice, extruded broken rice, and expanded broken rice. The study results revealed that the application of extruded and expanded broken rice improved the feed pellet quality, growth performance, nutrient digestibility, and gut microbiota of weaned piglets. Furthermore, extruded broken rice exhibited a superior feeding effect compared to expanded broken rice.


Subject(s)
Gastrointestinal Microbiome , Oryza , Animals , Swine , Digestion , Diet/veterinary , Nutrients/metabolism , Animal Feed/analysis
17.
Plant J ; 113(1): 75-91, 2023 01.
Article in English | MEDLINE | ID: mdl-36416176

ABSTRACT

Soloist is a member of a distinct and small subfamily within the AP2/ERF transcriptional factor family that play important roles in plant biotic and abiotic stress responses. There are limited studies of Soloist genes and their functions are poorly understood. We characterized the abiotic and biotic stress tolerance function of the ScSoloist gene (designated as ScAPD1-like) from the desert moss Syntrichia caninervis. ScAPD1-like responded to multiple abiotic, biotic stresses and plant hormone treatments. ScAPD1-like protein located to the nucleus and bound to several DNA elements. Overexpression of ScAPD1-like in Arabidopsis did not alter abiotic stress resistance or inhibit Pseudomonas syringae pv. tomato (Pst) DC3000 infection. However, overexpression of ScAPD1-like significantly increased the resistance of transgenic Arabidopsis and S. caninervis to Verticillium dahliae infection, decreased reactive oxygen species accumulation and improved reactive oxygen species scavenging activity. ScAPD1-like overexpression plants altered the abundance of transcripts for lignin synthesis and promoted lignin accumulation in Arabidopsis. ScAPD1-like directly bind to RAV1, AC elements, and TATA-box in the promoters of AtPAL1 and AtC4H genes, respectively, in vitro. Chromatin immunoprecipitation-quantitative polymerase chain reaction assays demonstrated ScAPD1-like directly bound to PAL and C4H genes promoters in Arabidopsis and their homologs in S. caninervis. In S. caninervis, ScAPD1-like overexpression and RNAi directly regulated the abundance of ScPAL and ScC4H transcripts and modified the metabolites of phenylpropanoid pathway. We provide insight into the function of Soloist in plant defense mechanisms that likely occurs through activation of the phenylpropanoid biosynthesis pathway. ScAPD1-like is a promising candidate gene for breeding strategies to improve resistance to Verticillium wilt.


Subject(s)
Arabidopsis , Ascomycota , Bryophyta , Bryopsida , Verticillium , Reactive Oxygen Species/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Lignin/metabolism , Plant Breeding , Bryophyta/metabolism , Bryopsida/genetics , Ascomycota/metabolism , Gene Expression Regulation, Plant/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Gossypium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
18.
Biosaf Health ; 5(1): 62-67, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36320662

ABSTRACT

We analyzed variations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome during a flight-related cluster outbreak of coronavirus disease 2019 (COVID-19) in Shenzhen, China, to explore the characteristics of SARS-CoV-2 transmission and intra-host single nucleotide variations (iSNVs) in a confined space. Thirty-three patients with COVID-19 were sampled, and 14 were resampled 3-31 days later. All 47 nasopharyngeal swabs were deep-sequenced. iSNVs and similarities in the consensus genome sequence were analyzed. Three SARS-CoV-2 variants of concern, Delta (n = 31), Beta (n = 1), and C.1.2 (n = 1), were detected among the 33 patients. The viral genome sequences from 30 Delta-positive patients had similar SNVs; 14 of these patients provided two successive samples. Overall, the 47 sequenced genomes contained 164 iSNVs. Of the 14 paired (successive) samples, the second samples (T2) contained more iSNVs (median: 3; 95% confidence interval [95% CI]: 2.77-10.22) than did the first samples (T1; median: 2; 95% CI: 1.63-3.74; Wilcoxon test, P = 0.021). 38 iSNVs were detected in T1 samples, and only seven were also detectable in T2 samples. Notably, T2 samples from two of the 14 paired samples had additional mutations than the T1 samples. The iSNVs of the SARS-CoV-2 genome exhibited rapid dynamic changes during a flight-related cluster outbreak event. Intra-host diversity increased gradually with time, and new site mutations occurred in vivo without a population transmission bottleneck. Therefore, we could not determine the generational relationship from the mutation site changes alone.

19.
Antibiotics (Basel) ; 11(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36289938

ABSTRACT

Antimicrobial resistance (AMR) has been a serious threat to human health, and combination therapy is proved to be an economic and effective strategy for fighting the resistance. However, the abuse of drug combinations conversely accelerates the spread of AMR. In our previous work, we concluded that the mutant selection indexes (SIs) of one agent against a specific bacterial strain are closely related to the proportions of two agents in a drug combination. To discover probable correlations, predictors and laws for further proposing feasible principles and schemes guiding the AMR-preventing practice, here, three aspects were further explored. First, the power function (y = axb, a > 0) correlation between the SI (y) of one agent and the ratio (x) of two agents in a drug combination was further established based on the mathematical and statistical analyses for those experimental data, and two rules a1 × MIC1 = a2 × MIC2 and b1 + b2 = −1 were discovered from both equations of y = a1xb1 and y = a2xb2 respectively for two agents in drug combinations. Simultaneously, it was found that one agent with larger MPC alone for drug combinations showed greater potency for narrowing itself MSW and preventing the resistance. Second, a new concept, mutation-preventing selection index (MPSI) was proposed and used for evaluating the mutation-preventing potency difference of two agents in drug combination; a positive correlation between the MPSI and the mutant prevention concentration (MPC) or minimal inhibitory concentration (MIC) was subsequently established. Inspired by this, the significantly positive correlation, contrary to previous reports, between the MIC and the corresponding MPC of antimicrobial agents against pathogenic bacteria was established using 181 data pairs reported. These results together for the above three aspects indicate that the MPCs in alone and combination are very important indexes for drug combinations to predict the mutation-preventing effects and the trajectories of collateral sensitivity, and while the MPC of an agent can be roughly calculated from its corresponding MIC. Subsequently, the former conclusion was further verified and improved via antibiotic exposure to 43 groups designed as different drug concentrations and various proportions. The results further proposed that the C/MPC for the agent with larger proportion in drug combinations can be considered as a predictor and is the key to judge whether the resistance and the collateral sensitivity occur to two agents. Based on these above correlations, laws, and their verification experiments, some principles were proposed, and a diagram of the mutation-preventing effects and the resistant trajectories for drug combinations with different concentrations and ratios of two agents was presented. Simultaneously, the reciprocal of MPC alone (1/MPC), proposed as the stress factors of two agents in drug combinations, together with their SI in combination, is the key to predict the mutation-preventing potency and control the trajectories of collateral sensitivity. Finally, a preliminary scheme for antimicrobial combinations preventing AMR was further proposed for subsequent improvement research and clinic popularization, based on the above analyses and discussion. Moreover, some similar conclusions were speculated for triple or multiple drug combinations.

20.
J Musculoskelet Neuronal Interact ; 22(2): 242-250, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35642703

ABSTRACT

OBJECTIVES: a) To explore the expression of Foxf1 and NF-κB in bone tissue of ovariectomized rats with osteoporosis and b) to investigate the role and mechanism of NF-κB pathway regulated by Foxf1 gene in the differentiation and formation of rat osteoclasts and osteoblasts with cell experiments. METHODS: Ovariectomized rat model of osteoporosis was established with 3-month-old female SD rats. The rats were divided into sham group (n=10) and osteoporosis group (n=10). Real time fluorescent quantitative PCR and Western blot were used to detect the expression levels of Foxf1 and NF-κB genes and proteins in the femur tissues of rats and analyze their correlation. RESULTS: Both Foxf1 and NF- κB were highly expressed in the femur tissues. Upon the overexpression of Foxf1 gene in osteoblasts and osteoclasts in vitro, the gene and protein expression of NF-κB were also upregulated, significantly reducing the gene and protein expression levels of osteogenic factors, including ATF4, OCN, ALP and Runx2. CONCLUSIONS: Foxf1 gene could inhibit osteoblast formation and promote osteoclast differentiation by NF-κB pathway, which may increase the risk of osteoporosis in rats.


Subject(s)
Forkhead Transcription Factors , NF-kappa B , Osteoporosis , Animals , Female , Forkhead Transcription Factors/genetics , NF-kappa B/genetics , Osteoblasts/cytology , Osteoclasts/cytology , Osteoporosis/genetics , Osteoporosis/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...