Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 235: 111950, 2022 10.
Article in English | MEDLINE | ID: mdl-35931012

ABSTRACT

The human-induced lead (Pb) contamination brings about serious environmental issues around the world and it also poses severe risks to wildlife including birds. Avian thymus is one of primary lymphoid organs and it plays an important role in regulating T cell-based cellular immunity. Therefore, in this study, we tried to examine toxic effects and potential molecular mechanism of Pb on avian thymus using a biological model species-Japanese quail (Coturnix japonica). One-week-old Japanese quails were exposed to 0, 50, 500 and 1000 ppm Pb concentrations in drinking water for three weeks when thymus reached developmental climax. The results showed body weight, thymus weight and thymic size were reduced significantly by Pb exposure. Meanwhile, histopathological changes including vacuolation, cortex atrophy and nuclear debris were detected in thymic cells of Pb exposure. In addition, ultrastructural alterations such as mitochondrial damage, chromatin condensation, and nuclear destruction were found in the thymus of Pb treatments. The increase of reactive oxygen species (ROS) and Malondialdehyde (MDA) as well as the inhibition of antioxidant system indicated that Pb exposure caused oxidative damages in the thymus. Pb exposure also increased thymic cell apoptosis. Moreover, RNA-Seq analysis revealed that thymic functional pathways were disrupted by Pb exposure. Especially, Pb exposure disturbed T cell differentiation and led to T helper type 1 (Th1) /T helper type 2 (Th2) imbalance by interfering with T cell receptor signaling and cytokine signaling. This study implied that Pb caused thymic immunosuppression through causing morphological deformation, structural destruction, oxidation and molecular signaling disruption.


Subject(s)
Coturnix , Immune Tolerance , Lead , Thymus Gland , Animals , Coturnix/immunology , Lead/toxicity , Oxidative Stress , Receptors, Antigen, T-Cell/metabolism , Thymus Gland/drug effects , Thymus Gland/physiopathology
2.
J Inorg Biochem ; 224: 111587, 2021 11.
Article in English | MEDLINE | ID: mdl-34428639

ABSTRACT

Bursa of Fabricius (BF), one of primary lymphoid organ, is unique to birds. Meanwhile, lead (Pb) is well known for its high toxicology to birds. Therefore, this study aimed to examine the chronic toxic effects of lead exposure on BF in Japanese quails (C. japonica) and the underlying mechanism of lead immunotoxicity. One-week old male quails were exposed to 0 ppm, 50 ppm, 500 ppm and 1000 ppm Pb concentrations by drinking water for four weeks. The results showed that Pb accumulation in BF increased in a dose dependent way. The growth and development of BF was retarded in 500 ppm and 1000 ppm Pb groups. The number of lymphocytes was decreased and the release of immunoglobulin G and M (IgG, IgM), complement 3 and 4 (C3, C4) was inhibited by Pb exposure. Lead exposure also caused oxidative stress and increasing apoptosis in BF. Moreover, histopathological damages characterized by inflammatory hyperemia and inflammatory cell infiltration and ultrastructural injury featured by mitochondrial vacuole, cristae fracture and chromatin concentration were found in BF of 500 ppm and 1000 ppm Pb groups. Furthermore, RNA sequencing based transcriptomic analysis revealed that molecular signaling and functional pathways in BF were disrupted by lead exposure. In addition, the activation of Nuclear Factor kappa B (NF-κB) pathway while the inhibition of wingless integrated/catenin beta 1 (Wnt/ß-catenin) signaling by Pb exposure were confirmed by quantitative real-time PCR (qPCR). Our study may benefit to understand potential mechanistic pathways of developmental immunotoxicology under Pb stress.


Subject(s)
Bursa of Fabricius/drug effects , Inflammation/metabolism , Lead/toxicity , NF-kappa B/metabolism , beta Catenin/metabolism , Animals , Apoptosis/drug effects , Bursa of Fabricius/immunology , Bursa of Fabricius/pathology , Coturnix/immunology , Coturnix/metabolism , Immunoglobulins/metabolism , Inflammation/chemically induced , Lymphocyte Count/methods , Male , Mitochondria/drug effects , Oxidative Stress/drug effects , Wnt Signaling Pathway/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...