Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Clinics (Sao Paulo) ; 79: 100383, 2024.
Article in English | MEDLINE | ID: mdl-38797123

ABSTRACT

BACKGROUND: Neonatal Intrahepatic Cholestasis (NICCD), as the early-age stage of Citrin deficiency involving liver dysfunction, lacks efficient diagnostic markers. Procalcitonin (PCT) has been identified as a biomarker for infection as well as various organ damage. This study aimed to explore the potential of PCT as a biomarker for NICCD. METHODS: In a single-center retrospective case-control study. Serum PCT concentrations before and after treatment of 120 NICCD patients, as the study group, were compared to the same number of cholestatic hepatitis patients, as the control group. The potential value of PCT to discriminate NICCD from control disease was further explored using Receiver Operating Characteristic (ROC) curve analysis and compared to those of other inflammatory markers. RESULTS: There was a significantly higher level of PCT in NICCD patients than in the control group. PCT concentrations were only weakly correlated with neutrophil counts and CRP levels (p ˂ 0.05). At a cut-off value of 0.495 ng/mL, PCT exhibited a significantly higher diagnostic value compared to other inflammatory markers for discriminating NICCD from the control, with a sensitivity of 90.8 % and specificity of 98.3 %. CONCLUSION: PCT might be used as an initial biomarker to discriminate children with NICCD from another hepatitis disease.


Subject(s)
Biomarkers , Cholestasis, Intrahepatic , Citrullinemia , Procalcitonin , ROC Curve , Humans , Procalcitonin/blood , Biomarkers/blood , Retrospective Studies , Male , Female , Case-Control Studies , Cholestasis, Intrahepatic/blood , Cholestasis, Intrahepatic/diagnosis , Citrullinemia/blood , Citrullinemia/complications , Citrullinemia/diagnosis , Infant , Infant, Newborn , Sensitivity and Specificity , C-Reactive Protein/analysis , Reference Values
2.
J Int Med Res ; 52(4): 3000605241234555, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587813

ABSTRACT

Among the various manifestations of COVID-19, the neurological implications of SARS-CoV-2 infection are of significant concern. Marchiafava-Bignami disease (MBD), a neurodegenerative disorder, exhibits a clinical spectrum ranging from mild progressive dementia in its chronic form to states of acute coma and varied mortality rates. Acute MBD primarily occurs in chronic alcoholics and malnourished individuals and is characterized by sudden loss of consciousness, seizures, confusion, and psychosis. We herein report a case of MBD presenting as acute loss of consciousness after the development of COVID-19. The patient presented with a history of fever and upper respiratory infection and was diagnosed with SARS-CoV-2 infection. He developed a neurological syndrome characterized by altered consciousness and convulsions, and brain magnetic resonance imaging revealed abnormal signals in the corpus callosum and frontoparietal lobes. Considering his alcohol intake history and the absence of other differential diagnoses, we diagnosed him with acute MBD triggered by COVID-19. After high-dose vitamin B1 and corticosteroid therapy, his clinical symptoms improved. In this case, we observed a temporal sequence between the development of COVID-19 and acute exacerbation of MBD. This case adds to the mounting evidence suggesting the potential effect of SARS-CoV-2 on the neurological system.


Subject(s)
COVID-19 , Dementia , Marchiafava-Bignami Disease , Humans , Male , Consciousness , Marchiafava-Bignami Disease/diagnosis , Marchiafava-Bignami Disease/diagnostic imaging , COVID-19/complications , SARS-CoV-2 , Coma
3.
NPJ Parkinsons Dis ; 10(1): 70, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548756

ABSTRACT

This study aimed to investigate the association between irritable bowel syndrome (IBS) and Parkinson's disease (PD) utilizing prospective cohort study and Mendelian randomization. The dataset contained a substantial cohort of 426,911 participants from the UK Biobank, discussing the association between IBS and PD with Cox proportional hazards models and case-control analysis while adjusting for covariates such as age, gender, ethnicity and education level. In univariate Cox regression model, the risk of PD was reduced in IBS patients (HR: 0.774, 95%CI: 0.625-0.956, P = 0.017), but the statistical significance diminished in the three models after adjusting for other variables. In a few subgroup analyses, IBS patients are less likely to develop into PD, and patients diagnosed with IBS after 2000 also had a lower risk (HR: 0.633, 95%CI: 0.403-0.994, P = 0.047) of subsequently developing PD. In addition, we matched five healthy control participants based on gender and age at the end of the study for each IBS patient diagnosed during the follow-up period, and logistic regression results (OR:1.239, 95%CI: 0.896-1.680, P = 0.181) showed that IBS was not associated with the risk of PD. Mendelian randomization did not find significant evidence of the causal relationship between IBS and Parkinson's disease (OR: 0.801, 95%CI: 0.570-1.278, P = 0.204). Overall, we suggest that IBS status is not associated with the risk of developing PD, and that these findings provide valuable insights into the clinical management and resource allocation of patients with IBS.

4.
Aging (Albany NY) ; 16(2): 1555-1580, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38240717

ABSTRACT

Genome-wide association studies (GWAS) have identified multiple risk variants for Parkinson's disease (PD). Nevertheless, how the risk variants confer the risk of PD remains largely unknown. We conducted a proteome-wide association study (PWAS) and summary-data-based mendelian randomization (SMR) analysis by integrating PD GWAS with proteome and protein quantitative trait loci (pQTL) data from human brain, plasma and CSF. We also performed a large transcriptome-wide association study (TWAS) and Fine-mapping of causal gene sets (FOCUS), leveraging joint-tissue imputation (JTI) prediction models of 22 tissues to identify and prioritize putatively causal genes. We further conducted PWAS, SMR, TWAS, and FOCUS using a multi-trait analysis of GWAS (MTAG) to identify additional PD risk genes to boost statistical power. In this large-scale study, we identified 16 genes whose genetically regulated protein abundance levels were associated with Parkinson's disease risk. We undertook a large-scale analysis of PD and correlated traits, through TWAS and FOCUS studies, and discovered 26 casual genes related to PD that had not been reported in previous TWAS. 5 genes (CD38, GPNMB, RAB29, TMEM175, TTC19) showed significant associations with PD at both the proteome-wide and transcriptome-wide levels. Our study provides new insights into the etiology and underlying genetic architecture of PD.


Subject(s)
Parkinson Disease , Transcriptome , Humans , Genome-Wide Association Study , Proteome/genetics , Genetic Predisposition to Disease , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Membrane Glycoproteins/genetics
5.
Mov Disord ; 38(12): 2258-2268, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37990409

ABSTRACT

BACKGROUND: Patients with Parkinson's disease (PD) have consistently demonstrated brain structure abnormalities, indicating the presence of shared etiological and pathological processes between PD and brain structures; however, the genetic relationship remains poorly understood. OBJECTIVE: The aim of this study was to investigate the extent of shared genetic architecture between PD and brain structural phenotypes (BSPs) and to identify shared genomic loci. METHODS: We used the summary statistics from genome-wide association studies to conduct MiXeR and conditional/conjunctional false discovery rate analyses to investigate the shared genetic signatures between PD and BSPs. Subsequent expression quantitative trait loci mapping in the human brain and enrichment analyses were also performed. RESULTS: MiXeR analysis identified genetic overlap between PD and various BSPs, including total cortical surface area, average cortical thickness, and specific brain volumetric structures. Further analysis using conditional false discovery rate (FDR) identified 21 novel PD risk loci on associations with BSPs at conditional FDR < 0.01, and the conjunctional FDR analysis demonstrated that PD shared several genomic loci with certain BSPs at conjunctional FDR < 0.05. Among the shared loci, 16 credible mapped genes showed high expression in the brain tissues and were primarily associated with immune function-related biological processes. CONCLUSIONS: We confirmed the polygenic overlap with mixed directions of allelic effects between PD and BSPs and identified multiple shared genomic loci and risk genes, which are likely related to immune-related biological processes. These findings provide insight into the complex genetic architecture associated with PD. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Genome-Wide Association Study , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/genetics , Genetic Predisposition to Disease/genetics , Phenotype , Brain/diagnostic imaging , Polymorphism, Single Nucleotide/genetics , Genetic Loci
6.
J Headache Pain ; 24(1): 111, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37592229

ABSTRACT

BACKGROUND: While previous genome-wide association studies (GWAS) have identified multiple risk variants for migraine, there is a lack of evidence about how these variants contribute to the development of migraine. We employed an integrative pipeline to efficiently transform genetic associations to identify causal genes for migraine. METHODS: We conducted a proteome-wide association study (PWAS) by combining data from the migraine GWAS data with proteomic data from the human brain and plasma to identify proteins that may play a role in the risk of developing migraine. We also combined data from GWAS of migraine with a novel joint-tissue imputation (JTI) prediction model of 17 migraine-related human tissues to conduct transcriptome-wide association studies (TWAS) together with the fine mapping method FOCUS to identify disease-associated genes. RESULTS: We identified 13 genes in the human brain and plasma proteome that modulate migraine risk by regulating protein abundance. In addition, 62 associated genes not reported in previous migraine TWAS studies were identified by our analysis of migraine using TWAS and fine mapping. Five genes including ICA1L, TREX1, STAT6, UFL1, and B3GNT8 showed significant associations with migraine at both the proteome and transcriptome, these genes are mainly expressed in ependymal cells, neurons, and glial cells, and are potential target genes for prevention of neuronal signaling and inflammatory responses in the pathogenesis of migraine. CONCLUSIONS: Our proteomic and transcriptome findings have identified disease-associated genes that may give new insights into the pathogenesis and potential therapeutic targets for migraine.


Subject(s)
Migraine Disorders , Proteome , Humans , Proteome/genetics , Genome-Wide Association Study , Proteomics , Transcriptome , Migraine Disorders/genetics
7.
Brain ; 146(8): 3373-3391, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36825461

ABSTRACT

GGC repeat expansion in the 5' untranslated region (UTR) of NOTCH2NLC is associated with a broad spectrum of neurological disorders, especially neuronal intranuclear inclusion disease (NIID). Studies have found that GGC repeat expansion in NOTCH2NLC induces the formation of polyglycine (polyG)-containing protein, which is involved in the formation of neuronal intranuclear inclusions. However, the mechanism of neurotoxicity induced by NOTCH2NLC GGC repeats is unclear. Here, we used NIID patient-specific induced pluripotent stem cell (iPSC)-derived 3D cerebral organoids (3DCOs) and cellular models to investigate the pathophysiological mechanisms of NOTCH2NLC GGC repeat expansion. IPSC-derived 3DCOs and cellular models showed the deposition of polyG-containing intranuclear inclusions. The NOTCH2NLC GGC repeats could induce the upregulation of autophagic flux, enhance integrated stress response and activate EIF2α phosphorylation. Bulk RNA sequencing for iPSC-derived neurons and single-cell RNA sequencing (scRNA-seq) for iPSC-derived 3DCOs revealed that NOTCH2NLC GGC repeats may be associated with dysfunctions in ribosome biogenesis and translation. Moreover, NOTCH2NLC GGC repeats could induce the NPM1 nucleoplasm translocation, increase nucleolar stress, impair ribosome biogenesis and induce ribosomal RNA sequestration, suggesting dysfunction of membraneless organelles in the NIID cellular model. Dysfunctions in ribosome biogenesis and phosphorylated EIF2α and the resulting increase in the formation of G3BP1-positive stress granules may together lead to whole-cell translational inhibition, which may eventually cause cell death. Interestingly, scRNA-seq revealed that NOTCH2NLC GGC repeats may be associated with a significantly decreased proportion of immature neurons while 3DCOs were developing. Together, our results underscore the value of patient-specific iPSC-derived 3DCOs in investigating the mechanisms of polyG diseases, especially those caused by repeats in human-specific genes.


Subject(s)
DNA Helicases , RNA Helicases , Humans , Poly-ADP-Ribose Binding Proteins , RNA Recognition Motif Proteins , 5' Untranslated Regions , Intranuclear Inclusion Bodies , Ribosomes , Trinucleotide Repeat Expansion/genetics
8.
Int J Stroke ; 18(1): 109-116, 2023 01.
Article in English | MEDLINE | ID: mdl-36367219

ABSTRACT

BACKGROUND: Lacunar stroke accounts for a quarter of all strokes, but little is known about the underlying pathological mechanisms. Analysis of serum metabolites may allow better understanding of the underlying biological processes. Mendelian randomization (MR) can provide information on the causality of associations. AIMS: To identify causal relationships between serum metabolites and lacunar stroke. METHODS: We applied a two-sample MR analysis to evaluate relationships between 486 serum metabolites and lacunar stroke. The inverse-variance weighted (IVW) method was used to estimate the causal relationship of the exposure on the outcome, while sensitivity analyses were performed using MR-Egger, weighted median, and MR-PRESSO to eliminate the pleiotropy. We also performed a metabolic pathway analysis to identify potential metabolic pathways. RESULTS: We identified 15 known (8 risk and 7 protective) and 14 unknown serum metabolites associated with lacunar stroke. Among the known risk metabolites, two were lipids (1-linoleoylglycerophosphoethanolamine and dihomo-linolenate (20:3n3 or n6)), five amino acids (kynurenine, isobutyrylcarnitine, aspartate, trans-4-hydroxyproline, and 3-methyl-2-oxovalerate), and one peptide (ADSGEGDFXAEGGGVR). The known protective metabolites included four lipids (4-androsten-3beta,17beta-diol disulfate 1, 1-palmitoleoylglycerophosphocholine, adrenate (22:4n6), and glycodeoxycholate), one amino acid (methionine), and two exogenous metabolites (homostachydrine and 2-methoxyacetaminophen sulfate). Metabolic pathway analysis identified several pathways that might be involved in the disease. CONCLUSION: We identified eight risk and seven protective human serum metabolites associated with lacunar stroke. Isobutyrylcarnitine was positively associated with an increased risk of lacunar stroke. In addition, 3-methyl-2-oxovalerate and aspartate may be involved in the disease pathogenesis through metabolic pathways.


Subject(s)
Stroke, Lacunar , Stroke , Humans , Aspartic Acid , Mendelian Randomization Analysis , Stroke, Lacunar/genetics , Stroke/genetics , Lipids , Genome-Wide Association Study , Polymorphism, Single Nucleotide
9.
BMC Neurol ; 22(1): 235, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35761294

ABSTRACT

BACKGROUND: Many patients with neurological disorders experience chronic fatigue, but the neural mechanisms involved are unclear. OBJECTIVE: Here we investigated whether the brain structural and functional connectivity alterations were involved in fatigue related to neuromyelitis optica spectrum disorder (NMOSD). METHODS: This prospective pilot study used structural and resting-state functional brain magnetic resonance imaging to compare total cortical thickness, cortical surface area, deep gray matter volume and functional connectivity (FC) between 33 patients with NMOSD and 20 healthy controls (HCs). Patients were subgrouped as low fatigue (LF) and high fatigue (HF). RESULTS: HF patients scored higher on the Hamilton Anxiety Rating Scale and Hamilton Rating Scale for Depression than LF patients and HCs. The two patient subgroups and HC group did not differ significantly in cortical thickness, cortical surface area and volumes of the bilateral caudate nucleus, bilateral putamen, bilateral amygdala, bilateral hippocampus, bilateral thalamus proper or right nucleus accumbens (p > 0.05). However, after correcting for age, sex, years of education, anxiety and depression, HF patients showed larger left pallidum than HCs (0.1573 ± 0.0214 vs 0.1372 ± 0.0145, p = 0.009). Meanwhile, both LF patients (0.0377 ± 0.0052 vs 0.0417 ± 0.0052, p = 0.009) and HF patients (0.0361 ± 0.0071 vs 0.0417 ± 0.0052, p = 0.013) showed smaller left nucleus accumbens than HCs.. Compared with LF patients, HF patients showed significantly decreased FC between the left pallidum and bilateral cerebellar posterior lobes. CONCLUSIONS: This was the first evidence linking structural and functional alterations in the brain to fatigue in NMOSD, and in the future, long term follow-up was necessary.


Subject(s)
Neuromyelitis Optica , Brain/diagnostic imaging , Brain/pathology , Humans , Magnetic Resonance Imaging/methods , Neuromyelitis Optica/complications , Neuromyelitis Optica/diagnostic imaging , Neuromyelitis Optica/pathology , Pilot Projects , Prospective Studies
10.
Liver Int ; 42(2): 402-411, 2022 02.
Article in English | MEDLINE | ID: mdl-34811877

ABSTRACT

BACKGROUND & AIMS: Biallelic pathogenic variants in MYO5B cause microvillus inclusion disease (MVID), or familial intrahepatic cholestasis (FIC). The reported FIC patients are scarce and so the genotype-phenotype correlation has not been fully characterised. This study aimed to report more MYO5B-associated FIC patients and correlate genotypes to phenotypes in more detail. METHODS: The phenotype and genetic data of 12 newly diagnosed MYO5B-associated (including 11 FIC) patients, as well as 118 previously reported patients with available genotypes, were summarised. Only patients with biallelic MYO5B variants were enrolled. Nonsense, frameshift, canonical splice sites, initiation codon loss, and single exon or multiexon deletion were defined as null MYO5B variants. RESULTS: Phenotypically, 50 were isolated MVID, 47 involved both liver and intestine (combined), and 33 were isolated FIC (9 persistent, 15 recurrent, 3 transient, and 6 un-sub-classified) patients. The severity of intestinal manifestation was positively correlated to an increased number of null variants (ρ = 0.299, P = .001). All FIC patients carried at least one non-null variant, and the severity of cholestasis was correlated to the presence of a null variant (ρ = 0.420, P = .029). The proportion of FIC patients (16/29, 55%) harbouring missense/in-frame variants affecting the non-motor regions of MYO5B was significantly higher than that of MVID (3/25, 12%, P = .001) and combined patients (3/31, 10%, P = .000). 10 of the 29 FIC patients harboured missense/in-frame variants at the IQ motifs comparing to none in the 56 MVID and combined patients (P = .000). CONCLUSIONS: The phenotype of MYO5B deficiency was associated with MYO5B genotypes, the nullity or the domain affected.


Subject(s)
Cholestasis, Intrahepatic/genetics , Mucolipidoses , Myosin Heavy Chains , Myosin Type V , Genetic Association Studies , Humans , Liver/pathology , Mucolipidoses/genetics , Mucolipidoses/pathology , Mutation , Myosin Heavy Chains/genetics , Myosin Type V/genetics
11.
BMC Infect Dis ; 21(1): 1156, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34775956

ABSTRACT

BACKGROUND: Streptococcus pneumoniae (S. pneumoniae) is a major cause of bacterial meningitis, septicemia and pneumonia in children. Inappropriate choice of antibiotic can have important adverse consequences for both the individual and the community. Here, we focused on penicillin/cefotaxime non-susceptibility of S. pneumoniae and evaluated appropriateness of targeted antibiotic therapy for children with IPD (invasive pneumococcal diseases) in China. METHODS: A multicenter retrospective study was conducted in 14 hospitals from 13 provinces in China. Antibiotics prescription, clinical features and resistance patterns of IPD cases from January 2012 to December 2017 were collected. Appropriateness of targeted antibiotics therapy was assessed. RESULTS: 806 IPD cases were collected. The non-susceptibility rates of S. pneumoniae to penicillin and cefotaxime were 40.9% and 20.7% respectively in 492 non-meningitis cases, whereas those were 73.2% and 43.0% respectively in 314 meningitis cases. Carbapenems were used in 21.3% of non-meningitis cases and 42.0% of meningitis cases for targeted therapy. For 390 non-meningitis cases with isolates susceptible to cefotaxime, vancomycin and linezolid were used in 17.9% and 8.7% of cases respectively for targeted therapy. For 179 meningitis cases with isolates susceptible to cefotaxime, vancomycin and linezolid were prescribed in 55.3% and 15.6% of cases respectively. Overall, inappropriate targeted therapies were identified in 361 (44.8%) of 806 IPD cases, including 232 (28.8%) cases with inappropriate use of carbapenems, 169 (21.0%) cases with inappropriate use of vancomycin and 62 (7.7%) cases with inappropriate use of linezolid. CONCLUSIONS: Antibiotic regimens for IPD definite therapy were often excessive with extensive prescription of carbapenems, vancomycin or linezolid in China. Antimicrobial stewardship programs should be implemented to improve antimicrobial use.


Subject(s)
Anti-Bacterial Agents , Pneumococcal Infections , Anti-Bacterial Agents/therapeutic use , Child , China/epidemiology , Humans , Infant , Microbial Sensitivity Tests , Pneumococcal Infections/drug therapy , Pneumococcal Infections/epidemiology , Prescriptions , Retrospective Studies
12.
Exp Cell Res ; 409(2): 112842, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34563514

ABSTRACT

We explore the role of miR-125b in septic cardiomyopathy, focusing on miR-125b/STAT3/HMGB1 axis. CLP mouse model and LPS-stimulated primary rat cardiomyocytes (CMs) and H9C2 cell were used as in vivo and in vitro models of septic cardiomyopathy, respectively. qRT-PCR and western blot were performed to measure expression levels of miR-125b, STAT3, HMGB1, and autophagy-related proteins. MTT assay was employed to examine LPS toxicity. Dual luciferase activity assay and CHIP were performed to validate interactions of miR-125b/STAT3 and STAT3/HMGB1 promoter. Immunostaining was used to assess the level of autophagic flux. ROS level was measured by fluorescence assay. Heart functions were examined via intracoronary Doppler ultrasound. miR-125b was diminished while STAT3 and HMGB1 were elevated in the heart tissue following CLP surgery and in LPS-treated H9C2 cells. LPS treatment up-regulated ROS generation and suppressed autophagic flux. Overexpression of miR-125b mimics or knockdown of STAT3 or HMGB1 alleviated LPS-induced hindrance of autophagic flux and ROS production. miR-125b directly targeted STAT3 mRNA and STAT3 bound with HMGB1 promoter. Overexpression of miR-125b mitigated myocardial dysfunction induced by CLP in vivo. Hyperactivation of STAT3/HMGB1 caused by reduced miR-125b contributes to ROS generation and the hindrance of autophagic flux during septic cardiomyopathy, leading to myocardial dysfunction.


Subject(s)
Autophagy , Cardiomyopathies/prevention & control , HMGB1 Protein/antagonists & inhibitors , MicroRNAs/genetics , STAT3 Transcription Factor/antagonists & inhibitors , Sepsis/complications , Animals , Apoptosis , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cell Proliferation , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Mice , Rats , Rats, Sprague-Dawley , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction
13.
J Cell Mol Med ; 25(17): 8244-8260, 2021 09.
Article in English | MEDLINE | ID: mdl-34410682

ABSTRACT

INTRODUCTION: Septic cardiomyopathy is a common complication of sepsis with high morbidity and mortality, but lacks specific therapy. This study aimed to reveal the role of circTLK1 and its potential mechanisms in septic cardiomyopathy. MATERIALS AND METHODS: The in vitro and in vivo models of septic cardiomyopathy were established. Cell viability and apoptosis were detected by CCK8, TUNEL and flow cytometry, respectively. LDH, CK, SOD, MDA, ATP, 8-OHdG, NAD+/NADH ratio, ROS level, mitochondrial membrane potential and cytochrome C distribution were evaluated using commercial kits. qRT-PCR and western blotting were performed to detect RNA and protein levels. Mitochondrial DNA (mtDNA) copy number and transcription were assessed by quantitative PCR. Dual-luciferase assay, RNA immunoprecipitation and co-immunoprecipitation were performed to verify the interaction between circTLK1/PARP1 and miR-17-5p. RESULTS: CircTLK1, PARP1 and HMGB1 were up-regulated in the in vitro and in vivo models of septic cardiomyopathy. CircTLK1 inhibition restrained LPS-induced up-regulation of PARP1 and HMGB1. Moreover, circTLK1 knockdown repressed sepsis-induced mtDNA oxidative damage, mitochondrial dysfunction and consequent cardiomyocyte apoptosis by inhibiting PARP1/HMGB1 axis in vitro and in vivo. In addition, circTLK1 enhanced PARP1 expression via sponging miR-17-5p. Inhibition of miR-17-5p abolished the protective effects of circTLK1 silencing on oxidative mtDNA damage and cardiomyocyte apoptosis. CONCLUSION: CircTLK1 sponged miR-17-5p to aggravate mtDNA oxidative damage, mitochondrial dysfunction and cardiomyocyte apoptosis via activating PARP1/HMGB1 axis during sepsis, indicating that circTLK1 may be a putative therapeutic target for septic cardiomyopathy.


Subject(s)
Cardiomyopathies/metabolism , DNA, Circular/physiology , DNA, Mitochondrial/physiology , Protein Serine-Threonine Kinases , Sepsis/metabolism , Animals , Cell Line , HMGB1 Protein/metabolism , Humans , Male , MicroRNAs/metabolism , Myocytes, Cardiac , Poly (ADP-Ribose) Polymerase-1/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/physiology , Rats , Rats, Sprague-Dawley
14.
Liver Int ; 41(11): 2720-2728, 2021 11.
Article in English | MEDLINE | ID: mdl-34369070

ABSTRACT

Na+ -taurocholate cotransporting polypeptide deficiency (NTCPD) is a newly described disorder arising from biallelic mutations of the SLC10A1 gene. As a result of a lack of compelling evidence from case-control studies, its genotypic and phenotypic features remain open for in-depth investigation. This study aimed to explore the genotypic and clinical phenotypic characteristics of paediatric patients with NTCPD. The SLC10A1 genotypes of all NTCPD patients were confirmed by screening for the prevalent variant c.800C>T and Sanger sequencing when necessary. The clinical presentations and laboratory changes were collected, reviewed and analysed, and then qualitatively and quantitatively compared with the relevant controls. A total of 113 paediatric NTCPD patients were diagnosed while c.374dupG and c.682_683delCT were detected as two novel pathogenic mutations. Hypercholanemia was observed in 99.12% of the patients. Indirect hyperbilirubinemia in affected neonates exhibited higher positive rates in comparison to controls. Moreover, transient cholestatic jaundice, elevated liver enzymes and 25-hydroxyvitamin D (Vit D) deficiency during early infancy were more commonly observed in patients than in controls. All NTCPD patients exhibited favourable clinical outcomes as a result of symptomatic and supportive treatment. The findings enriched the SLC10A1 mutation spectrum and provided comprehensive insights into the phenotypic characteristics of NTCPD. NTCPD should be considered and SLC10A1 gene should be analysed in patients with above age-dependent clinical features. Furthermore, over investigation and intervention should be avoided in the management of NTCPD patients.


Subject(s)
Liver Diseases , Symporters , Case-Control Studies , Child , Genotype , Humans , Infant, Newborn , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters/genetics
15.
Front Pharmacol ; 12: 653143, 2021.
Article in English | MEDLINE | ID: mdl-33959020

ABSTRACT

Bacterial and viral infection is a common cause of pneumonia, respiratory failure, and even acute respiratory distress syndrome. Increasing evidence indicates that red blood cells (RBCs) may contribute to immune response and inflammation. However, the precise molecular mechanisms that link RBC and hemolysis to the development and progression of inflammatory pathologies are not entirely understood. In this study, we used bacterial endotoxin, lipopolysaccharide (LPS), to mimic an infectious hemolysis and found that RBCs dynamically regulated cell aggregation between immune cells and human lung microvascular endothelial cells (HLMVEC). When RBCs were treated with LPS, integrin α4ß1 was increased and was accompanied by cytokines and chemokines release (TNF-α, IL-1ß, IL-6, IL-8, IFN-γ, CXCL12, CCL5, CCL7 and CCL4). Upon α4ß1 elevation, RBCs not only facilitated mature monocyte derived dendritic cell (mo-DCs) adhesion but also promoted HLMVEC aggregation. Furthermore, co-culture of the supernatant of LPS pre-treated RBCs with mo-DCs could promote naïve CD4 T cell proliferation. Notably, the filtered culture from LPS-lysed RBCs further promoted mo-DCs migration in a concentration dependent manner. From a therapeutic perspective, cyclic peptide inhibitor of integrin α4ß1 combined with methylprednisolone (α4ß1/Methrol) remarkably blocked RBCs aggregation to mo-DCs, HLMVEC, or mo-DCs and HLMVEC mixture. Moreover, α4ß1/Methrol dramatically reduced mo-DCs migration up-regulated glucocorticoid-induced leucine zipper in mo-DCs, and ultimately reversed immune cell dysfunction induced by hemolysis. Taken together, these results indicate that integrin α4ß1 on RBCs could mediate cell-cell interaction for adaptive immunity through influencing cell adhesion, migration, and T cell proliferation.

16.
Pathol Res Pract ; 215(3): 546-554, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30658864

ABSTRACT

OBJECTIVE: To investigate role of ß-catenin and lncRNA MALAT1/miR-217 axis to converge into the regulation of ZEB-1 in hepatocyte growth factor (HGF)-induced hepatocytes differentiated from bone marrow mesenchymal stem cells (BM-MSCs). METHODS: BM-MSCs were isolated and HGF was used to induce the differentiation of BM-MSCs into hepatocytes. HSC-T6 cells, BRL-3 A cells and differentiated BM-MSCs were treated by lipopolysaccharide(LPS). shRNAs were used to silence ß-catenin and recombinant plasmids were used to over-express ZEB1. Measurement of cell viability was conducted using MTT assay and Hoechst 33342 staining. RNA immunoprecipitation (RIP) assay was used to determine binding of miR-217-3p and MALAT1. RESULTS: BM-MSCs successfully differentiated into hepatocytes by HGF treatment. Expression of ß-catenin, ZEB-1 and TERT was up-regulated to a higher level in hepatocytes differentiated from BM-MSCs than HSC-T6 cells and BRL-3 A cells after LPS stimulation. When ß-catenin was knocked down in all cell lines, expression of ß-catenin, ZEB-1 and TERT was significantly decreased as well as telomerase activity. While when ZEB1 was over-expressed, expression of TERT and telomerase activity was all significantly up-regulated. In hepatocytes differentiated from BM-MSCs, miR-217 was down-regulated and lncRNA MALAT1 was up-regulated. RIP analysis showed MALAT1 was physically associated with miR-217 and might function in the regulation of ZEB-1, further enhancing the expression of TERT so as to augment telomerase activity. CONCLUSION: We successfully used HGF to mediate differentiation of BM-MSCs into hepatocytes, and found that ß-catenin-coordinated MALAT1/miR-217 axis could up-regulate expression of ZEB-1 and further enhanced the telomerase activity through regulation of TERT in BM-MSCs differentiating into hepatocytes.


Subject(s)
Cell Differentiation/physiology , Hepatocytes/cytology , Mesenchymal Stem Cells/cytology , Telomerase/metabolism , Zinc Finger E-box-Binding Homeobox 1/biosynthesis , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Female , Hepatocyte Growth Factor/pharmacology , Hepatocytes/drug effects , Hepatocytes/metabolism , Mesenchymal Stem Cells/drug effects , RNA, Long Noncoding/biosynthesis , Rats , Rats, Sprague-Dawley , Up-Regulation , beta Catenin/metabolism
17.
BMC Pediatr ; 18(1): 267, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30092777

ABSTRACT

BACKGROUND: The mortality rate due to severe sepsis is approximately 30-60%. Sepsis readily progresses to septic shock and multiple organ dysfunction, representing a significant problem in the pediatric intensive care unit (PICU). The aim of this study was to explore the value of plasma mitochondrial DNA (mtDNA) for early diagnosis and prognosis in children with sepsis. METHODS: A total of 123 children with sepsis who were hospitalized in the Hunan Children's Hospital PICU from July 2013 to December 2014 were divided into the general sepsis group (n = 70) and severe sepsis group (n = 53) based on diagnostic standards. An additional 30 children with non-sepsis infection and 30 healthy children were randomly selected as a control group. Patients' plasma was collected during admission to the PICU. A pediatric critical illness score (PCIS) was also calculated. The plasma mtDNA level was examined using real-time polymerase chain reaction technology, and other parameters including routine laboratory values; blood lactate, procalcitonin (PCT), and C-reactive protein (CRP) levels; and data on survival were collected and compared among the groups. RESULTS: The plasma mtDNA level in the sepsis group than that in the non-sepsis infection and healthy groups. The plasma mtDNA level was significantly higher in the severe sepsis than in the general sepsis group (p < 0.001). A lower PCIS was associated with a higher plasma mtDNA level (p < 0.001). A higher number of organs with dysfunction was associated with higher plasma mtDNA levels (p < 0.001). Plasma mtDNA levels were higher among patients with elevated alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, creatinine, lactate dehydrogenase, creatine kinase, myoglobin, creatine kinase MB, and troponin than in those with values within the normal range. The mtDNA level was higher among non-survivors than among survivors, and this difference was significant. mtDNA showed a prognostic prediction value similar to that of lactate, PCT, and CRP. CONCLUSIONS: Plasma mtDNA levels may be a suitable biomarker for diagnosis and prognosis in children with sepsis.


Subject(s)
DNA, Mitochondrial/blood , Patient Acuity , Sepsis/diagnosis , Biomarkers/blood , Case-Control Studies , Child, Preschool , Female , Humans , Infant , Male , Prognosis , ROC Curve , Sepsis/blood
18.
Chin J Integr Med ; 23(12): 887-892, 2017 Dec.
Article in English | MEDLINE | ID: mdl-27392481

ABSTRACT

OBJECTIVE: To evaluate the efficacy and safety of Chinese medicine (CM) plus Western medicine (WM) in the treatment of pediatric patients with severe hand, foot and mouth disease (HFMD) by conducting a prospective, controlled, and randomized trial. METHODS: A total of 451 pediatric patients with severe HFMD were randomly assigned to receive WM therapy alone (224 cases, WM therapy group) or CM [Reduning Injection ( ) or Xiyanping Injection ()] plus WM therapy (227 cases, CM plus WM therapy group) for 7-10 days, according to a web-based randomization system. The primary outcome was fever clearance time, which was presented as temperature decreased half-life time. The secondary outcomes included the rate of rash/herpes disappearance within 120 h, as well as the rate for cough, runny nose, lethargy and weakness, agitation or irritability, and vomiting clearance within 120 h. The drug-related adverse events were also recorded. RESULTS: The temperature decreased half-life time was 40.4 h in the WM therapy group, significantly longer than 27.2 h in the CM plus WM therapy group (P<0.01). Moreover, the rate for rash/herpes disappearance within 120 h was 43.6% (99/227) in the CM plus WM therapy group, significantly higher than 29.5% (66/224) in the WM therapy group (P<0.01). In addition, the rate for cough, lethargy and weakness, agitation or irritability disappearance within 120 h was 32.6% (74/227) in the CM plus WM therapy group, significantly higher than 19.2% (43/224) in the WM therapy group (P<0.01). No drug-related adverse events were observed during the course of the study. CONCLUSION: The combined CM and WM therapy achieved a better therapeutic efficacy in treating severe HFMD than the WM therapy alone. Reduning or Xiyanping Injections may become an important complementary therapy to WM for relieving the symptoms of severe HFMD. (Registration No. NCT01145664).


Subject(s)
Hand, Foot and Mouth Disease/therapy , Medicine, Chinese Traditional , Child, Preschool , Female , Humans , Infant, Newborn , Male , Medicine, Chinese Traditional/adverse effects , Prospective Studies , Temperature , Treatment Outcome
19.
J Zhejiang Univ Sci B ; 16(6): 456-64, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26055907

ABSTRACT

Experiments were conducted to study the effects of dietary taurine and housing density on oviduct function in laying hens. Green-shell laying hens were randomly assigned to a free range group and two caged groups, one with low-density and the other with high-density housing. Each group was further divided into control (C) and taurine treatment (T) groups. All hens were fed the same basic diet except that the T groups' diet was supplemented with 0.1% taurine. The experiment lasted 15 d. Survival rates, laying rates, daily feed consumption, and daily weight gain were recorded. Histological changes, inflammatory mediator levels, and oxidation and anti-oxidation levels were determined. The results show that dietary taurine supplementation and reduced housing density significantly attenuated pathophysiological changes in the oviduct. Nuclear factor-κB (NF-κB) DNA binding activity increased significantly in the high-density housing group compared with the two other housing groups and was reduced by taurine supplementation. Tumor necrosis factor-α (TNF-α) mRNA expression in the high-density and low-density C and T groups increased significantly. In the free range and low-density groups, dietary taurine significantly reduced the expression of TNF-α mRNA. Supplementation with taurine decreased interferon-γ (IFN-γ) mRNA expression significantly in the low-density groups. Interleukin 4 (IL-4) mRNA expression was significantly higher in caged hens. IL-10 mRNA expression was higher in the high-density C group than in the free range and low-density C groups. Supplementation with taurine decreased IL-10 mRNA expression significantly in the high-density group and increased superoxide dismutase (SOD) activity in the free range hens. We conclude that taurine has important protective effects against oviduct damage. Reducing housing density also results in less oxidative stress, less inflammatory cell infiltration, and lower levels of inflammatory mediators in the oviduct. Therefore, both dietary taurine and reduced housing density can ameliorate oviduct injury, enhance oviduct health, and promote egg production in laying hens.


Subject(s)
Chickens/physiology , Dietary Supplements , Housing, Animal , Oviducts/physiology , Oviparity/physiology , Taurine/metabolism , Administration, Oral , Animals , Female , Taurine/administration & dosage
20.
Zhongguo Dang Dai Er Ke Za Zhi ; 15(12): 1113-5, 2013 Dec.
Article in Chinese | MEDLINE | ID: mdl-24342210

ABSTRACT

OBJECTIVE: To investigate the changes in peripheral blood Th17 and CD4(+)CD25(+) regulatory T (Treg) cells and their significance among children with hand, foot and mouth disease (HFMD). METHODS: Eighty-nine children with HFMD, including 55 cases of common HFMD and 34 cases of severe HFMD, were included in the study; and 30 healthy children were selected as the control group. The percentages of Th17 and CD4(+)CD25(+) Treg cells in CD4(+) T cells in peripheral blood were determined by flow cytometry. The expression levels of interleukin (IL)-10, transforming growth factor-ß (TGF-ß), and IL-17 were measured by enzyme-linked immunosorbent assay. RESULTS: Compared with the control group, the cases of common HFMD and severe HFMD had significantly increased levels of Th17 cells and IL-17 (P<0.05) but significantly decreased levels of CD4(+)CD25(+) Treg cells, IL-10, and TGF-ß (P<0.05). The severity of the HFMD was positively correlated with the levels of Th17 cells and IL-17 in peripheral blood but negatively correlated with the levels of CD4(+)CD25(+) Treg cells, IL-10, and TGF-ß. CONCLUSIONS: Children with HFMD have increased response of Th17 cells but decreased response of CD4(+)CD25(+) Treg cells in peripheral blood. Th17/CD4(+)CD25(+) Treg cell imbalance may play an important role in the pathogenesis of HFMD.


Subject(s)
Hand, Foot and Mouth Disease/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Child , Child, Preschool , Humans , Infant , Interleukin-10/blood , Interleukin-17/blood , Transforming Growth Factor beta/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...