Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37242082

ABSTRACT

Titanium dioxide (TiO2) has garnered significant attention among various photocatalysts, whereas its photocatalytic activity is limited by its wide bandgap and inefficient charge separation, making the exploration of new strategies to improve its photocatalytic performance increasingly important. Here, we report the synthesis of Ag/P25 nanocomposites through a one-step gamma-ray radiation method using AgNO3 and commercial TiO2 (Degussa P25). The resulting products were characterized by powder X-ray diffraction, UV-Vis diffused reflectance spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The effect of free radical scavengers, feed ratios of Ag/P25, and dose rates on the photocatalytic activity of the Ag/P25 nanocomposites were systematically investigated using rhodamine B under Xenon light irradiation. The results showed that the Ag/P25 photocatalyst synthesized with a feed ratio of 2.5 wt% and isopropyl alcohol as the free radical scavenger at a dose rate of 130 Gy/min exhibited outstanding photocatalytic activity, with a reaction rate constant of 0.0674 min-1, much higher than that of P25. Additionally, we found that the particle size of Ag could be effectively controlled by changing the dose rate, and the Ag/P25 nanocomposites doped with smaller size of Ag nanoparticles performed higher photocatalytic activities. The synthesis strategy presented in this study offers new insight into the future development of highly efficient photocatalysts using radiation techniques.

2.
Carbohydr Polym ; 290: 119506, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35550781

ABSTRACT

A novel agarose/Ti3C2Tx-crosslinked-polyacrylamide (AG/T-PAM) double-network (DN) hydrogel is synthesized by combining heating-cooling and γ-ray radiation-induced polymerization. The AG/T-PAM DN hydrogel possesses excellent mechanical properties with 4250% stretchability, and good adhesion to different substrates, such as an adhesive strength of 1148 kPa to copper at 30 °C. The resultant hydrogel also exhibits excellent tensile and compression sensing properties due to the variation of conductive network within hydrogel. The flexible and wearable strain sensor composed of the AG/T-PAM DN hydrogel presents rapid response to strain withstand 1000 cycles, and can monitor various movements of human body with a high sensibility. The AG/T-PAM DN hydrogel-based strain sensor will have broad application in large-scale strain detection scenarios requiring high sensitivity and adhesion.


Subject(s)
Hydrogels , Wearable Electronic Devices , Acrylic Resins , Adhesives/chemistry , Electric Conductivity , Humans , Hydrogels/chemistry , Sepharose , Titanium
3.
Macromol Biosci ; 22(2): e2100361, 2022 02.
Article in English | MEDLINE | ID: mdl-34761522

ABSTRACT

The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent mechanical properties is still a big challenge. Here, polyacrylamide/copper-alginate double network (PAM/Cu-alg DN) hydrogel electrolyte is successfully synthesized by radiation-induced polymerization and cross-linking process of acrylamide with N, N'-methylene-bis-acrylamide and subsequent cupric ion (Cu2+ ) crosslinking of alginate. The content of sodium alginate, absorbed dose, and the concentration of Cu2+ are investigated in detail for improving the overall properties of PAM/Cu-alg DN hydrogel electrolyte. The PAM/Cu-alg DN hydrogel electrolyte synthesizes by radiation technique and Cu2+ crosslinking shows superior mechanical properties with a tensile strength of 2.25 ± 0.02 MPa, excellent energy dissipation mechanism, and the high ionic conductivity of 4.08 ± 0.17 mS cm-1 . PAM/Cu-alg DN hydrogel is characterized with attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy analyses and the reason for the improvement of mechanical properties is illustrated. Furthermore, PAM/Cu-alg DN hydrogel electrolyte exhibits excellent strain-sensitivity, cyclic stability, and durability. This work paves for the new way for the preparation of DN hydrogel electrolytes with excellent properties.


Subject(s)
Alginates , Copper , Acrylic Resins , Alginates/chemistry , Copper/chemistry , Electrolytes , Hydrogels/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...