Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Sci Total Environ ; 892: 164440, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37244608

ABSTRACT

Cyanobacteria and their metabolites are one of the primary precursors of disinfection by-products (DBPs) in natural water environments. However, few studies have investigated whether the production of DBPs by cyanobacteria changes under complex environmental conditions and possible mechanisms underlying these changes. Therefore, we investigated the effects of algal growth phase, water temperature, pH, illumination and nutrients on the production of trihalomethane formation potential (THMFPs) by Microcystis aeruginosa in four algal metabolic fractions, that is, hydrophilic extracellular organic matter (HPI-EOM), hydrophobic EOM (HPO-EOM), hydrophilic intracellular organic matter (HPI-IOM) and hydrophobic IOM (HPO-IOM). Additionally, correlations between THMFPs and some typical algal metabolite surrogates were analyzed. The results showed that the productivity of THMFPs by M. aeruginosa in EOM could be affected significantly by the algal growth phase and incubation conditions, while the IOM productivity varied insignificantly. M. aeruginosa in the death phase could secrete more EOM and have a higher THMFP productivity than those in the exponential or stationary phases. Cyanobacteria grown under harsh conditions could have increased THMFP productivity in EOM by increasing the reactivity of algal metabolites with chlorine, for example, under low pH conditions, and secreting more metabolites in EOM, for example, under low temperature or nutrient limitation conditions. Polysaccharides were responsible for the enhanced THMFP productivity in HPI-EOM fraction, and a significant linear correlation was found between the concentration of polysaccharides and THMFPs (r = 0.8307). However, THMFPs in HPO-EOM did not correlate with dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UV254), specific UV absorbance (SUVA) and cell density. Thus, we could not specify the kind of algal metabolites that contribute to the increased THMFPs in the HPO-EOM fraction under harsh growth conditions. Compared with the case in EOM, the THMFPs in IOM were more stable and correlated with the cell density and total amount of IOM. The results implied that the THMFPs in the EOM were sensitive to growth conditions and were independent of algal density. Considering the fact that traditional water treatment plants cannot remove dissolved organics as efficiently as algal cells, the increased THMFP productivity in EOM by M. aeruginosa under harsh growth conditions could be a potentially serious threat to the safety of the water supply.


Subject(s)
Cyanobacteria , Microcystis , Water Purification , Microcystis/metabolism , Trihalomethanes/metabolism , Disinfection , Chlorine/metabolism , Water Purification/methods
2.
Bioresour Technol ; 367: 128226, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36328170

ABSTRACT

Many anaerobic activities involve carbon, nitrogen, iron, and sulfur cycles. As a well-developed porous material with abundant functional groups, pyrolytic biochar has been widely researched in efforts to promote microbial activities. However, the lack of consensus on the biochar mechanism has limited its practical application. This review summarizes the effects of different pyrolysis temperatures, particle sizes, and dosages of biochar on microbial activities and community in Fe(III) reduction, anaerobic digestion, nitrogen removal, and sulfate reduction systems. It was found that biochar could promote anaerobic activities by stimulating electron transfer, alleviating toxicity, and providing suitable habitats for microbes. However, it inhibits microbial activities by releasing heavy metal ions or persistent free radicals and adsorbing signaling molecules. Finding a balance between the promotion and inhibition of biochar is therefore essential. This review provides valuable perspectives on how to achieve efficient and stable use of biochar in anaerobic systems.


Subject(s)
Charcoal , Ferric Compounds , Anaerobiosis , Charcoal/pharmacology , Iron
3.
J Hazard Mater ; 416: 125850, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492801

ABSTRACT

This study aims to unravel the microbial responses to Cr(VI) stress in anaerobic ammonium oxidation (anammox) reactor. The result showed that anammox process could tolerate 2 mg/L Cr(VI) after acclimation, while 5 mg/L Cr(VI) stress resulted in significant inhibition on anammox bacterial activity. Ca. Jettenia was the predominant anammox genus, whose abundance showed a decreasing tendency with increasing Cr(VI) dosage. Cr(VI) addition resulted in significant and irreversible changes in microbial community structure, and increased the relative influence of stochastic processes on community assembly. Furthermore, rare subcommunity contributed greatly to biodiversity of whole community (90.35%), while abundant subcommunity were more similar to the whole community. Importantly, Cr(VI) exposure caused greater variations in rare subcommunity compared with abundant one, indicating that rare taxa were more sensitive to Cr(VI) stress. This was further confirmed by ABT model, which showed higher relative influence of Cr(VI) on rare subcommunity. In addition, results suggested that rare taxa play essential roles in whole community stability, because of their great contribution to species richness and community variations, and keystone roles in ecosystem network. Moreover, network analysis showed that conditionally rare taxa frequently and positively interacted with abundant taxa, which may contribute to the community resilience to Cr(VI) stress.


Subject(s)
Chromium , Microbiota , Bacteria/genetics , Biodiversity , Chromium/toxicity , Oxidation-Reduction
4.
J Hazard Mater ; 414: 125051, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33647612

ABSTRACT

The aim of present study was to re-evaluate the impacts of elevated Fe(III) stress on anaerobic ammonium oxidation (anammox) process. The results indicated that long-term low concentration Fe(III) (5 and 10 mg/L) exposure significantly improved the nitrogen removal efficiency of anammox process, while high concentration Fe(III) (50 and 100 mg/L) significantly deteriorated the reactor performance. Batch assays showed that the specific anammox activity, heme c content and hydrazine dehydrogenase activity were significantly increased and decreased under low and high concentration Fe(III) exposure, respectively, indicating an enhancement and inhibition of anammox activity. Moreover, the presence of high concentration Fe(III) significantly shifted the anammox community structure. Ca. Brocadia was the predominant anammox genus, whose abundance decreased from 14.26% to 8.13% as Fe(III) concentration increased from 0 to 100 mg/L. In comparison, the abundance of denitrifiers progressively increased from 3.70% to 6.68% with increasing Fe(III) concentration. These suggested that different functional bacteria differed in their responses to Fe(III) stress. Furthermore, long-term Fe(III) exposure significantly up-regulated the abundances of genes associated with nitrogen metabolism and Fe(III) reduction. Overall, the obtained findings are expected to advances our understanding of the responses of anammox process to elevated Fe(III) stress.


Subject(s)
Ammonium Compounds , Microbiota , Anaerobiosis , Bioreactors , Ferric Compounds , Nitrogen , Oxidation-Reduction
5.
Huan Jing Ke Xue ; 41(6): 2796-2804, 2020 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-32608796

ABSTRACT

A SNAD(simultaneous partial nitrification,ANAMMOX,and denitrification) process initiated in a submerged biological aerated filter (SBAF) was started up by seeding nitrification sludge and an ANAMMOX filter to investigate the operating characteristics and the succession of functional bacteria. The results showed that when the autotrophic nitrogen removal and denitrification were operated stably for 67 days at an initial COD concentration of 60 mg·L-1, the maximum nitrogen removal efficiency, the COD removal rate, and the nitrogen removal rate were 92.0%, 82.9%, and 2.3 kg·(m3·d)-1, respectively. Moreover, the total nitrogen removal rate of the SNAD process in this study was 12.6% higher than that of CANON process. The results of quantitative PCR showed that the abundance of AOB slightly increased, while the abundance of ANAMMOX was one order higher than that before the start-up of SNAD. In comparison, the abundances of denitrifiers and NOB remained at a relatively low level (107 copies·g-1). Taken together, these results suggested that the SBAF process with volcanic filter was beneficial for the accumulation of ANAMMOX and AOB.


Subject(s)
Bioreactors , Denitrification , Nitrification , Nitrogen/analysis , Oxidation-Reduction , Sewage
6.
Environ Res ; 183: 109157, 2020 04.
Article in English | MEDLINE | ID: mdl-32006768

ABSTRACT

Microbial reduction of sulfate and metal were simultaneously enhanced in the presence of graphene oxide (GO)-like nanomaterials, however, the mechanism remained unclear. In this study, bio-reduction of Cr was compared between free-living bacterium BY7 and immobilized BY7 (BY-rGO) on reduced GO particles. The role of extracellular polymeric substances (EPS) and rGO material on reduction of sulfate and Cr was investigated. Cr(VI) was reduced to Cr(III) and elemental Cr by BY-rGO particles up to 51% and 28%, respectively. EPS produced by the bacterium BY7 mainly consisted of proteins, polysaccharides, nucleic acids and humic substances. Concentration of EPS was sharply increased (about 54%) with the addition of graphene oxide, while the composition of EPS components was strongly affected by the exposure to Cr. By removing surface EPS without breaking the cells, reduction activities of sulfate and chromium by both BY-rGO particles and free-living BY7 cells were decreased. In contrast, reduction of sulfate and Cr by the free-living BY7 cells was enhanced with external addition of extracted EPS. Based on electrochemical analysis, the reduction peak indicating enhanced electron transfer was lost after removing EPS. Moreover, the contribution of each EPS fractions on sulfate and Cr reduction followed an order of polysaccharides > proteins > humic substances. Therefore, microbial sulfate and Cr reduction processes in the presence of BY-rGO particles were enhanced by the increasing amounts of EPS, which likely mediated electron transfer during sulfate and Cr reduction, and relieved bacteria from metal toxicity. Nevertheless, the presence of rGO was crucially important for elemental Cr production under sulfate-reducing condition, which might contribute to lowering electric potential or reducing activation energy for Cr(III) reduction. This work provided direct evidences for enhancing sulfate and Cr reduction activities by supplement of EPS as an additive to increase treatment efficiency in environmental bioremediation.


Subject(s)
Chromium , Graphite , Extracellular Polymeric Substance Matrix , Sulfates
7.
Biomed Res Int ; 2017: 3691819, 2017.
Article in English | MEDLINE | ID: mdl-29387720

ABSTRACT

Based on low carbon wastewater as the research object and using corncob as an external solid carbon source, the performance of corncob organic matter was assessed for its release potential, quantity of release, and safety of use. The effects of varying quantities of the solid carbon source on simultaneous nitrification and denitrification were investigated in a sequencing biofilm batch reactor (SBBR). Results show that the regularity of corncob as solid carbon source material was linear, with released concentrations of heavy metals being below the Chinese national standard limit values for heavy metals according to the surface water environment quality standards (I and II) (GB3838-2002). When temperatures were within 28~31°C, the dissolved oxygen level was 4.0 ± 0.2 mg/L and the pH conditions were within 7.5~8.0. The optimal quantity for corncob dosing was 5 g per 1.5 L of low carbon wastewater. Following treatment, the average effluent concentrations of NH4+-N and TN were 2.85 mg/L and 4.51 mg/L, respectively. The effluent concentration of NH4+-N, TN had reached the A level national standard of sewage treatment plant pollutant discharge standard (GB18918-2002).


Subject(s)
Bioreactors/microbiology , Carbon/metabolism , Nitrogen/metabolism , Sewage/microbiology , Water Purification/methods
8.
Waste Manag ; 29(6): 1870-6, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19144504

ABSTRACT

The present study evaluated the possibility of using the dewatered municipal sludge for non-agricultural purposes. The sludge was amended with soil and was applied at 0, 165, 330, 495 and 660 t/ha to promote the growth of Canna. The results showed that the Canna growth pattern exhibited a pronounced positive growth response in the range of 165-495 t/ha, and the Canna could not survive at an amendment rate of 660 t/ha. The analysis of chlorophyll fluorescence parameters showed that sludge did no harm to Canna, while under the conditions of barren soil alone, the plants were put into nutrients stress conditions. Due to the application of sludge, the concentration of heavy metals (Cu, Zn, Cr, Cd, Pb and Ni) in soil increased. However, by planting of Canna, contents of Cd, Ni and Zn showed trends of decline; Cd and Ni have shown a significant decline in concentration, while Zn had only limit response. As a result, dewatered sludge might be used to amend the barren soil and Canna could be used for phytoremediation of sludge.


Subject(s)
Sewage , Zingiberales/growth & development , Chlorophyll/metabolism , Metals, Heavy/metabolism , Nitrogen/analysis , Phosphorus/analysis , Soil/analysis , Zingiberales/metabolism
9.
Bioprocess Biosyst Eng ; 32(2): 175-82, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18521631

ABSTRACT

A laboratory scale experiment was described in this paper to enhance biological nitrogen removal by simultaneous nitrification and denitrification (SND) via nitrite with a sequencing batch biofilm reactor (SBBR). Under conditions of total nitrogen (TN) about 30 mg/L and pH ranged 7.15-7.62, synthetic wastewater was cyclically operated within the reactor for 110 days. Optimal operation conditions were established to obtain consistently high TN removal rate and nitrite accumulation ratio, which included an optimal temperature of 31 degrees C and an aeration time of 5 h under the air flow of 50 L/h. Stable nitrite accumulation could be realized under different temperatures and the nitrite accumulation ratio increased with an increase of temperature from 15 to 35 degrees C. The highest TN removal rate (91.9%) was at 31 degrees C with DO ranged 3-4 mg/L. Process control could be achieved by observing changes in DO and pH to judge the end-point of oxidation of ammonia and SND.


Subject(s)
Bioreactors , Nitrites/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...