Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38543111

ABSTRACT

COVID-19, caused by SARS-CoV-2, has emerged as the most destructive emerging infectious disease of the 21st century. Vaccination is an effective method to combat viral diseases. However, due to the constant mutation of the virus, new variants may weaken the efficacy of vaccines. In the current field of new coronavirus research, viral protease inhibitors have emerged as a highly regarded therapeutic strategy. Nevertheless, existing viral protease inhibitors do not fully meet the therapeutic needs. Therefore, this paper turned to traditional Chinese medicine to explore new active compounds. This study focused on 24 isolated compounds from Acorus calamus L. and identified 8 active components that exhibited significant inhibitory effects on SARS-CoV-2 PLpro. Among these, the compound 1R,5R,7S-guaiane-4R,10R-diol-6-one demonstrated the best inhibitory activity with IC50 values of 0.386 ± 0.118 µM. Additionally, menecubebane B and neo-acorane A exhibited inhibitory activity against both Mpro and PLpro proteases, indicating their potential as dual-target inhibitors. The molecular docking results confirmed the stable conformations of these compounds with the key targets and their good activity. ADMET and Lipinski's rule analyses revealed that all the small molecule ligands possessed excellent oral absorption properties. This study provides an experimental foundation for the discovery of promising antiviral lead compounds.

2.
Am J Transl Res ; 16(1): 234-254, 2024.
Article in English | MEDLINE | ID: mdl-38322552

ABSTRACT

Type 2 diabetes mellitus (T2DM), a common and frequently occurring disease in contemporary society, has become a global health threat. However, current mainstream methods of prevention and treatment, mainly including oral hypoglycemic drugs and insulin injections, do not fundamentally block the progression of T2DM. Therefore, it is imperative to find new ways to prevent and treat diabetes. Traditional Chinese medicine is characterized by multiple components, pathways, and targets with mild and long-lasting effects. Pharmacological studies have shown that nourishing yin traditional Chinese medicine (NYTCM) can play a positive role in the treatment of T2DM by regulating pathways such as the phosphatidylinositol 3-kinase/serine-threonine kinase, mitogen-activated protein kinase, nuclear factor-kappa B, and other pathways to stimulate insulin secretion, protect and repair pancreatic ß cells, alleviate insulin resistance, ameliorate disordered glucose and lipid metabolism, mitigate oxidative stress, inhibit inflammatory responses, and regulate the intestinal flora. The pharmacologic activity, mechanisms, safety, and toxicity of NYTCM in the treatment of T2DM are also reviewed in this manuscript.

3.
Front Nutr ; 11: 1361668, 2024.
Article in English | MEDLINE | ID: mdl-38379552

ABSTRACT

Fritillaria is a well-known health-promoting food, but it has many varieties and its market circulation is chaotic. In order to explore the differences in volatile organic compounds (VOCs) among different varieties of Fritillaria and quickly and accurately determine the variety of Fritillaria, this study selected six varieties of Fritillaria and identified and analyzed their volatile components using gas chromatography-ion mobility spectrometry (GC-IMS), establishing the characteristic fingerprints of VOCs in Fritillaria. In all samples, a total of 76 peaks were detected and 67 VOCs were identified. It was found that the composition of VOCs in different varieties of Fritillaria was similar, but the content was different. Combined with chemometric analysis, the differences between VOCs were clearly shown after principal component analysis, cluster analysis, and partial least-squares discriminant analysis. This may provide theoretical guidance for the identification and authenticity determination of different varieties of Fritillaria.

4.
Eur J Nutr ; 63(4): 1103-1111, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38319384

ABSTRACT

PURPOSE: Previous observational studies have shown that green tea consumption is associated with a reduced incidence of digestive system cancers (DSCs). However, the observed association could be due to confounding factors. Therefore, we used a two-sample Mendelian randomization (MR) approach to assess the causal effect of green tea intake on the risk of five common DSCs. METHODS: Independent genetic variants strongly associated with green tea consumption in European and East Asian populations were selected as instrumental variables in genome-wide association studies involving up to 64,949 European individuals and 152,653 East Asian individuals, respectively. The associations between genetic variants and DSCs were extracted from the FinnGen study and the Japan Biobank. The primary analysis was performed using random-effects inverse variance weighting (IVW). Other MR analyses, including weighted mode-based estimate, weighted-median, MR-Egger regression, Mendelian Randomization-Pleiotropy Residual Sum and Outlier (MR-PRESSO) analysis, were used for sensitivity analyses. In addition, a multivariate MR design was performed to adjust for smoking and alcohol consumption. RESULTS: The IVW results showed no causal relationship between tea intake and DSCs risk in European population (esophagus cancer: odds ratio (OR) = 1.044, 95% confidence interval (CI) 0.992-1.099, p = 0.096; stomach cancer: OR = 0.988, 95% CI 0.963-1.014, p = 0.368; colorectal cancer: OR = 1.003, 95% CI 0.992-1.015, p = 0.588; liver cancer: OR = 0.996, 95% CI 0.960-1.032, p = 0.808; pancreatic cancer: OR = 0.990, 95% CI 0.965-1.015, p = 0.432). The MR-Egger regression, MR-PRESSO analysis and other methods also confirmed the reliability of the conclusion. Similarly, no significant association was found between green tea consumption and the incidence of DSCs among East Asians. This relationship is not significant even after adjusting for smoking and alcohol consumption (P > 0.05). CONCLUSION: Our study provides evidence that genetically predicted green tea intake is not causally associated with the development of DSCs in the European and East Asian population.


Subject(s)
Digestive System Neoplasms , Genome-Wide Association Study , Mendelian Randomization Analysis , Tea , White People , Humans , Mendelian Randomization Analysis/methods , Digestive System Neoplasms/genetics , Digestive System Neoplasms/epidemiology , Digestive System Neoplasms/etiology , Genome-Wide Association Study/methods , White People/genetics , White People/statistics & numerical data , Asia, Eastern/epidemiology , Europe/epidemiology , Risk Factors , Asian People/genetics , Asian People/statistics & numerical data , Polymorphism, Single Nucleotide , Incidence , East Asian People
5.
J Microbiol Biotechnol ; 34(2): 467-475, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38303136

ABSTRACT

ρ-Hydroxyacetophenone is an important and versatile compound that has been widely used in medicine, cosmetics, new materials, and other fields. At present, there are two ways to obtain ρ-hydroxyacetophenone. One is to extract it from plants, such as Artemisia capillaris Thunb and Cynanchum otophyllum Schneid, and the other is to synthesize it by using chemical methods. Of these two methods, the second is the main one, although it has problems, such as flammable and explosive reagents, difficult separation of by-products, and harsh reaction conditions. To solve these issues, we adopted genetic engineering in this study to construct engineered Escherichia coli containing Hped gene or EbA309 gene. Whole-cell biotransformation was conducted under the same conditions to select the engineered E. coli with the higher activity. Orthogonal tests were conducted to determine the optimal biotransformation condition of the engineered E. coli. The results showed that the optimal condition was as follows: substrate concentration of 40 mmol/l, IPTG concentration of 0.1 mmol/l, an induction temperature of 25°C, and a transformation temperature of 35°C. Under this condition, the effects of transformation time on the ρ-hydroxyacetophenone concentration and cell growth were further studied. We found that as the transformation time extended, the ρ-hydroxyacetophenone concentration showed a gradually increasing trend. However, when the ρ-hydroxyacetophenone concentration increased to 1583.19 ± 44.34 mg/l in 24 h, cell growth was inhibited and then entered a plateau. In this research, we realized the synthesis of ρ-hydroxyacetophenone by biotransformation, and our findings lay a preliminary foundation for further improving and developing this method.


Subject(s)
Escherichia coli , Genetic Engineering , Escherichia coli/genetics , Escherichia coli/metabolism , Oxidoreductases/metabolism , Ethanol/metabolism
6.
Adv Sci (Weinh) ; 11(2): e2304610, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37953381

ABSTRACT

Metabolic fingerprints in serum characterize diverse diseases for diagnostics and biomarker discovery. The identification of systemic lupus erythematosus (SLE) by serum metabolic fingerprints (SMFs) will facilitate precision medicine in SLE in an early and designed manner. Here, a discovery cohort of 731 individuals including 357 SLE patients and 374 healthy controls (HCs), and a validation cohort of 184 individuals (SLE/HC, 91/93) are constructed. Each SMF is directly recorded by nano-assisted laser desorption/ionization mass spectrometry (LDI MS) within 1 minute using 1 µL of native serum, which contains 908 mass to charge features. Sparse learning of SMFs achieves the SLE identification with sensitivity/specificity and area-under-the-curve (AUC) up to 86.0%/92.0% and 0.950 for the discovery cohort. For the independent validation cohort, it exhibits no performance loss by affording the sensitivity/specificity and AUC of 89.0%/100.0% and 0.992. Notably, a metabolic biomarker panel is screened out from the SMFs, demonstrating the unique metabolic pattern of SLE patients different from both HCs and rheumatoid arthritis patients. In conclusion, SMFs characterize SLE by revealing its unique metabolic pattern. Different regulation of small molecule metabolites contributes to the precise diagnosis of autoimmune disease and further exploration of the pathogenic mechanisms.


Subject(s)
Arthritis, Rheumatoid , Lupus Erythematosus, Systemic , Humans , Biomarkers , Lupus Erythematosus, Systemic/diagnosis , Sensitivity and Specificity
7.
Fitoterapia ; 172: 105774, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38097021

ABSTRACT

Five novel lignans, namely styraxjaponica A-E (1-5), together with eight known compounds (6-13) were isolated from the leaves of Styrax japonicus Siebold & Zucc. Their chemical structures were characterized by extensive analysis of 1D and 2D NMR, UV, IR, HRESIMS spectroscopic analysis as well as by comparison to the literature. The absolute configurations of the new compounds were further determined by quantum chemical electronic circular dichroism (ECD) calculations powered by time-dependent density functional theory (TDDFT). Moreover, the anti-inflammatory effects of compounds 1-5 in lipopolysaccharide (LPS)-induced RAW 264.7 cells were also evaluated by measuring nitric oxide (NO) concentrations. All compounds displayed significant anti-inflammatory activity without affecting cell viability in vitro.


Subject(s)
Lignans , Lignans/pharmacology , Lignans/chemistry , Styrax , Molecular Structure , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Nitric Oxide
8.
Nanoscale Adv ; 5(24): 6804-6818, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38059044

ABSTRACT

Recently, the development of atmospheric pressure matrix assisted desorption/ionization mass spectrometry (AP MALDI MS) has made contributions not only to biomolecule analysis but also to spatial distribution. This has positioned AP MALDI as a powerful tool in multiple domains, thanks to its comprehensive advantages compared to conventional MALDI MS. These developments have addressed challenges associated with previous AP MALDI analysis systems, such as optimization of apparatus settings, synthesis of novel matrices, preconcentration and isolation strategies before analysis. Herein, applications in different fields using AP MALDI MS were described, including peptide and protein analysis, metabolite analysis, pharmaceutical analysis, and mass spectrometry imaging.

9.
J Mater Chem B ; 11(40): 9666-9675, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37779509

ABSTRACT

Non-specific adsorption of bioprobes based on surface-enhanced Raman spectroscopy (SERS) technology inevitably endows white blood cells (WBC) in the peripheral blood with Raman signals, which greatly interfere the identification accuracy of circulating tumor cells (CTCs). In this study, an innovative strategy was proposed to effectively identify CTCs by using SERS technology assisted by a receiver operating characteristic (ROC) curve. Firstly, a magnetic Fe3O4-Au complex SERS bioprobe was developed, which could effectively capture the triple negative breast cancer (TNBC) cells and endow the tumor cells with distinct SERS signals. Then, the ROC curve obtained based on the comparison of SERS intensity of TNBC cells and WBC was used to construct a tumor cell identification model. The merit of the model was that the detection sensitivity and specificity could be intelligently switched according to different identification purposes such as accurate diagnosis or preliminary screening of tumor cells. Finally, the difunctional recognition ability of the model for accurate diagnosis and preliminary screening of tumor cells was further validated by using the healthy human blood added with TNBC cells and blood samples of real tumor patients. This novel difunctional identification strategy provides a new perspective for identification of CTCs based on the SERS technology.


Subject(s)
Biosensing Techniques , Neoplastic Cells, Circulating , Triple Negative Breast Neoplasms , Humans , Neoplastic Cells, Circulating/pathology , Triple Negative Breast Neoplasms/diagnosis , Spectrum Analysis, Raman/methods , Silver/chemistry
10.
Front Microbiol ; 14: 1269567, 2023.
Article in English | MEDLINE | ID: mdl-37731919

ABSTRACT

Ralstonia solanacearum, the causal agent of bacterial wilt, is a devastating plant pathogenic bacterium that infects more than 450 plant species. Until now, there has been no efficient control strategy against bacterial wilt. In this study, we screened a library of 100 plant-derived compounds for their antibacterial activity against R. solanacearum. Twelve compounds, including harmine, harmine hydrochloride, citral, vanillin, and vincamine, suppressed bacterial growth of R. solanacearum in liquid medium with an inhibition rate higher than 50%. Further focus on harmine revealed that the minimum inhibitory concentration of this compound is 120 mg/L. Treatment with 120 mg/L of harmine for 1 and 2 h killed more than 90% of bacteria. Harmine treatment suppressed the expression of the virulence-associated gene xpsR. Harmine also significantly inhibited biofilm formation by R. solanacearum at concentrations ranging from 20 mg/L to 60 mg/L. Furthermore, application of harmine effectively reduced bacterial wilt disease development in both tobacco and tomato plants. Collectively, our results demonstrate the great potential of plant-derived compounds as antibacterial agents against R. solanacearum, providing alternative ways for the efficient control of bacterial wilt.

11.
Front Pharmacol ; 14: 1225515, 2023.
Article in English | MEDLINE | ID: mdl-37745048

ABSTRACT

Object: This research intended to probe the antibacterial effect and pharmacodynamic substances of Tea-Seed Oil (TSO) through the use of ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) analysis, network analysis, and molecular docking. Methods: The major chemical components in the methanol-extracted fractions of TSO were subjected to UPLC-Q-TOF-MS. Network pharmacology and molecular docking techniques were integrated to investigate the core components, targets, and potential mechanisms of action through which the TSO exert their antibacterial properties. To evaluate the inhibitory effects, the minimum inhibitory concentration and diameter of the bacteriostatic circle were calculated for the potential active ingredients and their equal ratios of combinatorial components (ERCC) against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Moreover, the quantification of the active constituents within TSO was achieved through the utilization of high-performance liquid chromatography (HPLC). Results: The methanol-extracted fractions contained a total of 47 chemical components, predominantly consisting of unsaturated fatty acids and phenolic compounds. The network pharmacology analysis and molecular docking analysis revealed that various components, including gallocatechin, gallic acid, epigallocatechin, theophylline, chlorogenic acid, puerarin, and phlorizin, have the ability to interact with critical core targets such as serine/threonine protein kinase 1 (AKT1), epidermal growth factor receptor (EGFR), a monoclonal antibody to mitogen-activated protein kinase 14 (MAPK14), HSP90AA1, and estrogen receptor 1 (ESR1). Furthermore, these components can modulate the phosphatidylinositol-3-kinase protein kinase B (PI3K-AKT), estrogen, MAPK and interleukin 17 (IL-17) signaling pathways, hereby exerting antibacterial effects. In vitro validation trials have found that seven components, namely gallocatechin, gallic acid, epigallocatechin, theophylline, chlorogenic acid, puerarin, and phloretin, displayed substantial inhibitory effects on E. coli, S. aureus, P. aeruginosa, and C. albicans, and are typically present in tea oil, with a total content ranging from 15.87∼24.91 µg·g-1. Conclusion: The outcomes of this investigation possess the possibility to expand our knowledge base concerning the utilization of TSO, furnish a theoretical framework for the exploration of antibacterial drugs and cosmetics derived from inherently occurring TSO, and establish a robust groundwork for the advancement and implementations of TOS products within clinical settings.

12.
Molecules ; 28(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37570846

ABSTRACT

The gas chromatography-ion mobility spectrometry (GC-IMS) method is a new technology for detecting volatile organic compounds. This study was carried out to evaluate the effects of volatile aroma compounds of Curcuma essential oils (EOs) after 60Co radiation by GC-IMS. Dosages of 0, 5, and 10 kGy of 60Co were used to analyze EOs of Curcuma after 60Co irradiation (named EZ-1, EZ-2, and EZ-3). The odor fingerprints of volatile organic compounds in different EOs of Curcuma samples were constructed by headspace solid-phase microextraction and GC-IMS after irradiation. The differences in odor fingerprints of EOs were compared by principal component analysis (PCA). A total of 92 compounds were detected and 65 compounds were identified, most of which were ketones, aldehydes, esters, and a small portion were furan compounds. It was found that the volatile matter content of 0 kGy and 5 kGy was closer, and the use of 10 kGy 60Co irradiation would have an unstable effect on the EOs. In summary, it is not advisable to use a higher dose when using 60Co irradiation for sterilization of Curcuma. Due to the small gradient of irradiation dose used in the experiment, the irradiation dose can be adjusted appropriately according to the required sterilization requirements during the production and storage process of Curcuma to obtain the best irradiation conditions. GC-IMS has the advantages of GC's high separation capability and IMS's fast response, high resolution, and high sensitivity, and the sample requires almost no pretreatment; it can be widely used in the analysis of traditional Chinese medicines containing volatile components. It is shown that irradiation technology has good application prospects in the sterilization of traditional Chinese medicines, but the changes in irradiation dose and chemical composition must be paid attention to.


Subject(s)
Oils, Volatile , Volatile Organic Compounds , Oils, Volatile/analysis , Gas Chromatography-Mass Spectrometry/methods , Curcuma/chemistry , Volatile Organic Compounds/analysis , Solid Phase Microextraction/methods
13.
Foods ; 12(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37444227

ABSTRACT

60Co irradiation is an efficient and rapid sterilization method. The aim of this work is to determine the changes in essential-oil composition under different irradiation intensities of 60Co and to select an appropriate irradiation dose with GC-IMS. Dosages of 0, 5, and 10 kGy of 60Co were used to analyze turmeric (Curcumae Longae Rhizoma) volatile oil after 60Co irradiation (named JH-1, JH-2, and JH-3). The odor fingerprints of volatile organic compounds in different turmeric volatile oil samples were constructed by headspace solid-phase microextraction and gas chromatography-ion mobility spectrometry (GC-IMS) after irradiation. The differences in odor fingerprints of volatile organic compounds (VOCs) were compared by principal component analysis (PCA). The results showed that 97 volatile components were detected in the volatile oil of Curcuma longa, and 64 components were identified by database retrieval. With the change in irradiation intensity, the volatile compounds in the three turmeric volatile oil samples were similar, but the peak intensity was significantly different, which was attributed to the change in compound composition and content caused by different irradiation doses. In addition, the principal component analysis showed that JH-2 and JH-3 were relatively correlated, while JH-1 and JH-3 were far from each other. In general, different doses of 60Co irradiation can affect the content of volatile substances in turmeric volatile oil. With the increase in irradiation dose, the peak area decreased, and so the irradiation dose of 5 kGy/min was better. It is shown that irradiation technology has good application prospects in the sterilization of foods with volatile components. However, we must pay attention to the changes in radiation dose and chemical composition.

14.
Mater Horiz ; 10(6): 2109-2119, 2023 06 06.
Article in English | MEDLINE | ID: mdl-36942442

ABSTRACT

Recently, nanomedicine design has shifted from simple nanocarriers to nanodrugs with intrinsic antineoplastic activities for therapeutic performance optimization. In this regard, degradable nanomedicines containing functional inorganic ions have blazed a highly efficient and relatively safe ion interference paradigm for cancer theranostics. Herein, given the potential superiorities of infinite coordination polymers (ICPs) in degradation peculiarity and functional integration, a state-of-the-art dual-ICP-engineered nanomedicine is elaborately fabricated via integrating ferrocene (Fc) ICPs and calcium-tannic acid (Ca-TA) ICPs. Thereinto, Fc ICPs, and Ca-TA ICPs respectively serve as suppliers of ferrous iron ions (Fe2+) and calcium ions (Ca2+). After the acid-responsive degradation of ICPs, released TA from Ca-TA ICPs facilitated the conversion of released ferric iron (Fe3+) from Fc ICPs into highly active Fe2+. Owing to the dual-path oxidative stress and neighboring effect mediated by Fe2+ and Ca2+, such a dual-ICP-engineered nanomedicine effectively induces dual-ion interference against triple-negative breast cancer (TNBC). Therefore, this work provides a novel antineoplastic attempt to establish ICP-engineered nanomedicines and implement ion interference-mediated synergistic therapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Nanomedicine , Polymers , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Oxidative Stress , Tannins/therapeutic use , Iron/therapeutic use , Ions/therapeutic use
15.
Small ; 19(20): e2207381, 2023 05.
Article in English | MEDLINE | ID: mdl-36799198

ABSTRACT

Exosomes are promising new biomarkers for colorectal cancer (CRC) diagnosis, due to their rich biological fingerprints and high level of stability. However, the accurate detection of exosomes with specific surface receptors is limited to clinical application. Herein, an exosome enrichment platform on a 3D porous sponge microfluidic chip is constructed and the exosome capture efficiency of this chip is ≈90%. Also, deep mass spectrometry analysis followed by multi-level expression screenings revealed a CRC-specific exosome membrane protein (SORL1). A method of SORL1 detection by specific quantum dot labeling is further designed and the ensemble classification system is established by extracting features from 64-patched fluorescence images. Importantly, the area under the curve (AUC) using this system is 0.99, which is significantly higher (p < 0.001) than that using a conventional biomarker (carcinoembryonic antigen (CEA), AUC of 0.71). The above system showed similar diagnostic performance, dealing with early-stage CRC, young CRC, and CEA-negative CRC patients.


Subject(s)
Colorectal Neoplasms , Exosomes , Humans , Carcinoembryonic Antigen , Microfluidics/methods , Biomarkers, Tumor/metabolism , Exosomes/metabolism , Porosity , Early Detection of Cancer , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/metabolism , LDL-Receptor Related Proteins/metabolism , Membrane Transport Proteins/metabolism
16.
Adv Healthc Mater ; 12(16): e2202391, 2023 06.
Article in English | MEDLINE | ID: mdl-36377485

ABSTRACT

Janus particles possess two or more distinct domains that are anisotropic in composition or surface features. They integrate different or even incompatible properties within a single particle, making them possible to perform diverse functions and multiple tasks simultaneously. Advances in micro/nanorobots demonstrate that they can effectively convert diverse energy sources into movement and reach target locations with precision. Integration of Janus structure with micro/nanobots is emerging as a promising tool for biomedical applications. In this review, the fabrication and energy sources of Janus micro/nanorobots are briefly introduced. After that, the recent progress of Janus micro/nanorobots for biomedicine, with a special focus on their applications for cargo delivery, bioimaging, biosensing, surgery, and therapy are presented and discussed. The application of Janus micro/nanorobots in biomedicine still faces serious challenges from fabrication, engines, biocompatibility, and biodegradation for their widespread in clinical situations. Nevertheless, a few emerging materials and approaches offer potential solutions to these problems.


Subject(s)
Multifunctional Nanoparticles , Anisotropy
17.
J Mater Chem B ; 11(24): 5238-5250, 2023 06 21.
Article in English | MEDLINE | ID: mdl-36477984

ABSTRACT

Deep tissue penetration, chemical inertness and biocompatibility give UCNPs a competitive edge over traditional fluorescent materials like organic dyes or quantum dots. However, the low quantum efficiency of UNCPs becomes an obstacle. Among extensive methods and strategies currently used to prominently solve this concerned issue, surface plasmon resonance (SPR) of noble metals is of great use due to the agreement between the SPR peak of metals and absorption band of UCNPs. A key challenge of this match is that the structures and sizes of noble metals have significant influences on the peak of SPR formants, where achieving an explicit elucidation of relationships between the physical properties of noble metals and their SPR formants is of great importance. This review aims to clarify the mechanism of the SPR effect of noble metals on the optical performance of UCNPs. Furthermore, novel research studies in which Au, Ag or Au/Ag composites in various structures and sizes are combined with UCNPs through different synthetic methods are summarized. We provide an overview of improved photoluminescence for bioimaging exhibited by different composite nanoparticles with respect to UCNPs acting as both cores and shells, taking Au@UCNPs, Ag@UCNPs and Au/Ag@UCNPs into account. Finally, there are remaining shortcomings and latent opportunities which deserve further research. This review will provide directions for the bioimaging applications of UCNPs through the introduction of the SPR effect of noble metals.


Subject(s)
Lanthanoid Series Elements , Nanoparticles , Quantum Dots , Lanthanoid Series Elements/chemistry , Surface Plasmon Resonance , Nanoparticles/chemistry , Quantum Dots/chemistry
18.
Digital Chinese Medicine ; (4): 257-271, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-997647

ABSTRACT

@#[Objective[ To analyze the main syndrome types, medication rules, and core prescription characteristics of traditional Chinese medicine (TCM) in the treatment of metabolism-associated fatty liver disease (MAFLD), and to predict the anti-MAFLD mechanism of core formula, so as to provide references for the clinical application of TCM and the development of new drugs. [Methods] Literature research on TCM in treating MAFLD was retrieved from China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (VIP), and Wanfang Database since the establishment of the database to July 2022. Excel 2019 and Chinese Medicine Inheritance Computing Platform (V3.0) were used for frequency analysis, association rule analysis, and cluster analysis of effective prescriptions. The key components, targets, and action pathways of anti-MAFLD core formulas were predicted by network pharmacology. Finally, the interactions between the obtained core components and their core targets were verified reversely by molecular docking technology. [Results] A total of 218 articles were screened and selected, including 352 prescriptions, involving 270 traditional Chinese herbs. The drugs were used a total of 3 901 times, and a total of 10 915 cases were collected, among which the prevalence rate was higher in males. The main types of TCM syndrome included intermingled phlegm and blood stasis syndrome, liver depression and spleen deficiency syndrome, and damp-heat in liver and gallbladder syndrome, among which Shanzha (Crataegi Fructus), Danshen (Salviae Miltiorrhizae Radix et Rhizoma), Fuling (Poria), Zexie (Alismatis Rhizoma), Chaihu (Bupleuri Radix), and Baizhu (Atractylodis Macrocephalae Rhizoma) were the most frequently used. The properties of Chinese medicine primarily encompassed thermal characteristics, with a predominant emphasis on cold and warm; the flavors of herbs were predominantly characterized by bitterness and sweetness, while the majority exhibited tropism towards the spleen and liver meridians. The drugs were primarily classified based on their efficacy in tonifying deficiencies, promoting diuresis and moistening, enhancing blood circulation and removing blood stasisheat-clearing, etc. The association rules were employed to derive a set of 20 core drug pairs, while cluster analysis was utilized to identify three distinct groups of core drug combinations. Network pharmacological showed that the main components of the core formula “Shanzha (Crataegi Fructus) - Danshen (Salviae Miltiorrhizae Radix et Rhizoma) - Zexie (Alismatis Rhizoma) - Chaihu (Bupleuri Radix) - Fuling (Poria)” in the treatment of MAFLD were quercetin, apigenin, puerarin, luteolin, ursolic acid, kaempferol, tanshinone IIA, emodin, paeonol, etc., which involved RAC-alpha serine/threonine-protein kinase 1 (AKT1), cellular tumor antigen p53 (TP53), interleukin (IL)-6, IL-1β, signal transducer and activator of transcription 3 (STAT3), epidermal growth factor receptor (EGFR), peroxisome proliferative activated receptor gamma (PPARG), and other key targets. The molecular docking results showed that the core components had good binding to lipid and atherosclerosis, and phosphatidylinositol 3 kinase (PI3K)/AKT signaling pathway-associated proteins. [Conclusion] The main principles of TCM for the treatment of MAFLD involve soothing the liver and strengthening the spleen, eliminating phlegm and dampness, clearing heat and dampness, as well as promoting blood circulation and removing blood stasis. The core formula may exert anti-MAFLD effects mediated through multiple components, targets, and signaling pathways. This study establishes a theoretical foundation for the clinical application of TCM in the treatment of MAFLD, and serves as a reference for further exploration of new drugs against MAFLD.

19.
J Anal Methods Chem ; 2022: 8042631, 2022.
Article in English | MEDLINE | ID: mdl-36059925

ABSTRACT

Berberidis Cortex is rich in alkaloids, and many of them have antibacterial, anti-inflammatory, and hypoglycemic activities. However, few research studies have focused on the quantitative analysis of multiple components from Berberidis Cortex. In this study, a new quality evaluation strategy for Berberidis Cortex was developed and validated by high-performance liquid chromatography (HPLC), which involved single marker, fingerprint, and stoichiometric methods. Using berberine hydrochloride as an internal reference, the relative correction factors of palmatine hydrochloride, magnoline, and jatrorrhizine hydrochloride were 2.4537, 0.9783, and 1.0035, respectively, and their durabilities were also well performed. In addition, both methods mentioned above were used to compare the mass fractions of four isoquinoline alkaloids in ten batches of Berberidis Cortex from different origins. These results indicated that the approach applied in this study was accurate and feasible. The fingerprints of these ten batches of Berberidis Cortex were established, and eleven components were identified with the similarity greater than 0.993. Both cluster and principal component analysis were carried out based on the peak area of these components, the results demonstrated that these ten batches of Berberidis Cortex were divided into two groups and the distribution of the medicinal material was basically consistent. Therefore, quantitative analysis of multicomponents by single marker (QAMS) can be widely used in the quality control of Berberidis Cortex as theoretical basis.

20.
J Mater Chem B ; 10(10): 1508-1519, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35166287

ABSTRACT

Mitochondria, as the "the power plants" of cells, have been extensively studied because of their biological functions of providing energy and participating in signaling pathways. In parallel, calcium (Ca2+) plays a vital role in the homeostasis balance and function coordination of mitochondria, especially in cancer cells which metabolize frequently to maintain their growth. On this basis, Ca2+ overload has been an efficient, yet safe theranostic model for cancer therapy, by activating mitochondrial apoptosis pathways to achieve cancer suppression. However, the integration of functional units mediating Ca2+ overload into the nanoplatform remains a difficult but significant task. This review aims to highlight meaningful designs of nanoplatforms for Ca2+ overload, including monotherapy and combination therapy. In addition, perspectives on further development of Ca2+ overload are provided, mainly emphasizing scientific restrictions and future exploitation directions.


Subject(s)
Calcium , Neoplasms , Calcium/metabolism , Homeostasis , Humans , Mitochondria/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...