Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985576

ABSTRACT

Installing fluorine atoms onto natural products holds great promise for the generation of fluorinated molecules with improved or novel pharmacological properties. The enzymatic oxidative carbon-carbon coupling reaction represents a straightforward strategy for synthesizing biaryl architectures, but the exploration of this method for producing fluorine-substituted derivatives of natural products remains elusive. Here, in this study, we report the protein engineering of cytochrome P450 from Mycobacterium tuberculosis (MtCYP121) for the construction of a series of new-to-nature fluorine-substituted Mycocyclosin derivatives. This protocol takes advantage of a "hybrid" chemoenzymatic procedure consisting of tyrosine phenol lyase-catalyzed fluorotyrosine preparation from commercially available fluorophenols, intermolecular chemical condensation to give cyclodityrosines, and an engineered MtCYP121-catalyzed intramolecular biphenol coupling reaction to complete the strained macrocyclic structure. Computational mechanistic studies reveal that MtCYP121 employs Cpd I to abstract a hydrogen atom from the proximal phenolic hydroxyl group of the substrate to trigger the reaction. Then, conformational change makes the two phenolic hydroxyl groups close enough to undergo intramolecular hydrogen atom transfer with the assistance of a pocket water molecule. The final diradical coupling process completes the intramolecular C-C bond formation. The efficiency of the biaryl coupling reaction was found to be influenced by various fluorine substitutions, primarily due to the presence of distinct binding conformations.

2.
Chem Commun (Camb) ; 57(100): 13744-13747, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34851338

ABSTRACT

Here we report the design and synthesis of two new difluoro-diazoketone reagents (difluorophenylthiol diazoketone and difluorophenoxyl diazoketone) and their [3+2] cycloaddition reactions with aryldiazonium salts under silver catalysis conditions. This protocol enables regioselective access to a broad scope of difluorophenylthiol- and difluorophenoxyl-substituted tetrazole-carbinols in a one-pot operation. Further synthetic derivatizations including dephenylthiolation and unexpected phenylthiol group migration/fluorination allow the efficient preparation of α-difluoromethyl tetrazole-carbinols and α-trifluoromethyl tetrazole-thioethers.

SELECTION OF CITATIONS
SEARCH DETAIL
...