Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
J Pineal Res ; 76(4): e12964, 2024 May.
Article in English | MEDLINE | ID: mdl-38803014

ABSTRACT

Circadian disruption such as shift work, jet lag, has gradually become a global health issue and is closely associated with various metabolic disorders. The influence and mechanism of circadian disruption on renal injury in chronic kidney disease (CKD) remains inadequately understood. Here, we evaluated the impact of environmental light disruption on the progression of chronic renal injury in CKD mice. By using two abnormal light exposure models to induce circadian disruption, we found that circadian disruption induced by weekly light/dark cycle reversal (LDDL) significantly exacerbated renal dysfunction, accelerated renal injury, and promoted renal fibrosis in mice with 5/6 nephrectomy and unilateral ureteral obstruction (UUO). Mechanistically, RNA-seq analysis revealed significant immune and metabolic disorder in the LDDL-conditioned CKD kidneys. Consistently, renal content of ATP was decreased and ROS production was increased in the kidney tissues of the LDDL-challenged CKD mice. Untargeted metabolomics revealed a significant buildup of lipids in the kidney affected by LDDL. Notably, the level of ß-NMN, a crucial intermediate in the NAD+ pathway, was found to be particularly reduced. Moreover, we demonstrated that both ß-NMN and melatonin administration could significantly rescue the light-disruption associated kidney dysfunction. In conclusion, environmental circadian disruption may exacerbate chronic kidney injury by facilitating inflammatory responses and disturbing metabolic homeostasis. ß-NMN and melatonin treatments may hold potential as promising approaches for preventing and treating light-disruption associated CKD.


Subject(s)
Circadian Rhythm , Renal Insufficiency, Chronic , Animals , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/etiology , Mice , Male , Circadian Rhythm/physiology , Melatonin/metabolism , Disease Progression , Mice, Inbred C57BL , Photoperiod , Kidney/metabolism , Kidney/pathology
2.
Microorganisms ; 12(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38792694

ABSTRACT

This study aimed to investigate the alkaloid secondary metabolites of Aspergillus amstelodami BSX001, a fungus isolated from Anhua dark tea, and to improve the extraction yield of the active ingredients by optimizing the extraction process. The structural characterization of the compounds was investigated using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. The antioxidant activity of echinulin-related alkaloids was evaluated by determining the total reducing power and DPPH radical scavenging capacity. The extraction process of the compound with optimum activity was optimized by a single-factor test and response surface methodology (RSM) combined with Box-Behnken design (BBD). The optimized result was validated. Finally, a new alkaloid 8-hydroxyechinulin (1), and four known alkaloids, variecolorin G (2), echinulin (3), neoechinulin A (4), and eurocristatine (5), were isolated. Echinulin-related compounds 1, 3, and 4 possessed certain antioxidant activities, with IC50 values of 0.587 mg/mL, 1.628 mg/mL, and 0.219 mg/mL, respectively, against DPPH radicals. Their total reducing power at a concentration of 0.5 mg/mL was 0.29 mmol/L, 0.17 mmol/L, and 4.25 mmol/L. The extraction process of neoechinulin A was optimized with the optimum extraction parameters of 72.76% methanol volume fraction, 25 mL/g solid-liquid ratio, and 50.8 °C soaking temperature. Under these conditions, the extraction yield of neoechinulin A was up to 1.500 mg/g.

3.
Heliyon ; 10(7): e29101, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38601565

ABSTRACT

A special microenvironment called the "pre-metastatic niche" is thought to help primary tumor cells migrate to new tissues and invade them, in part because the normal barrier function of the vascular endothelium is compromised. While the primary tumor itself can promote the creation of such niches by secreting pro-metastatic factors, the underlying molecular mechanisms are still poorly understood. Here, we show that the injection of primary tumor-secreted pro-metastatic factors from B16F10 melanoma or 4T1 breast cancer cells into healthy mice can induce the destruction of the vascular endothelial glycocalyx, which is a polysaccharide coating on the vascular endothelial lumen that normally inhibits tumor cell passage into and out of the circulation. However, when human umbilical vein endothelial cultures were treated in vitro with these secreted pro-metastatic factors, no significant destruction of the glycocalyx was observed, implying that this destruction requires a complex in vivo microenvironment. The tissue section analysis revealed that secreted pro-metastatic factors could clearly upregulate macrophage-related molecules such as CD11b and tumor necrosis factor-α (TNF-α) in the heart, liver, spleen, lung, and kidney, which is associated with the upregulation and activation of heparanase. In addition, macrophage depletion significantly attenuated the degradation of the vascular endothelial glycocalyx induced by secreted pro-metastatic factors. This indicates that the secreted pro-metastatic factors that destroy the vascular endothelial glycocalyx rely primarily on macrophages. Our findings suggest that the formation of pre-metastatic niches involves degradation of the vascular endothelial glycocalyx, which may hence be a useful target for developing therapies to inhibit cancer metastasis.

4.
Environ Sci Technol ; 58(18): 8065-8075, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38597221

ABSTRACT

We report a previously unrecognized but efficient reductive degradation pathway in peroxydisulfate (PDS)-driven soil remediation. With supplements of naturally occurring low-molecular-weight organic acids (LMWOAs) in anaerobic biochar-activated PDS systems, degradation rates of 12 γ-hexachlorocyclohexanes (HCH)-spiked soils boosted from 40% without LMWOAs to a maximum of 99% with 1 mM malic acid. Structural analysis revealed that an increase in α-hydroxyl groups and a diminution in pKa1 values of LMWOAs facilitated the formation of reductive carboxyl anion radicals (COO•-) via electrophilic attack by SO4•-/•OH. Furthermore, degradation kinetics were strongly correlated with soil organic matter (SOM) contents than iron minerals. Combining a newly developed in situ fluorescence detector of reductive radicals with quenching experiments, we showed that for soils with high, medium, and low SOM contents, dominant reactive species switched from singlet oxygen/semiquinone radicals to SO4•-/•OH and then to COO•- (contribution increased from 30.8 to 66.7%), yielding superior HCH degradation. Validation experiments using SOM model compounds highlighted critical roles of redox-active moieties, such as phenolic - OH and quinones, in radical formation and conversion. Our study provides insights into environmental behaviors related to radical activation of persulfate in a broader soil horizon and inspiration for more advanced reduction technologies.


Subject(s)
Soil , Soil/chemistry , Free Radicals/chemistry , Soil Pollutants/chemistry , Oxidation-Reduction , Halogenation
5.
ACS Appl Mater Interfaces ; 16(13): 16290-16299, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38520333

ABSTRACT

With the development and application of thermoelectric (TE) devices, it requires not only high-performance of TE materials but also high mechanical properties. Here, we report a medium-temperature liquid material, AgCuTe, with high mechanical properties. The results demonstrate that AgCuTe possesses a multiphase structure characterized by abundant grain boundaries, resulting in reduced lattice thermal conductivity and inherently high mechanical strength. Furthermore, nano-SiC was alloyed into the AgCuTe material to further improve its mechanical and TE properties. Nano-SiC exhibited a button-like distribution within the grain boundaries, introducing a pinning effect that significantly elevated the Vickers hardness of the samples. Additionally, nano-SiC induced strong lattice distortion energy in the vicinity, which promotes Ag/Cu ions to escape from the lattice and enhances the liquid-like behavior of Ag/Cu ions. Finally, these enhancements led to a 21% improvement in the mechanical properties and a 40% improvement in the TE properties for AgCuTe. Notably, AgCuTe achieved its peak TE performance, with a latest peak ZT value of 1.32 at 723 K. This research expands the potential applications of AgCuTe.

6.
Int J Obes (Lond) ; 48(6): 749-763, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38379083

ABSTRACT

Obesity is a major global health concern because of its strong association with metabolic and neurodegenerative diseases such as diabetes, dementia, and Alzheimer's disease. Unfortunately, brain insulin resistance in obesity is likely to lead to neuroplasticity deficits. Since the evidence shows that insulin resistance in brain regions abundant in insulin receptors significantly alters mitochondrial efficiency and function, strategies targeting the mitochondrial quality control system may be of therapeutic and practical value in obesity-induced cognitive decline. Exercise is considered as a powerful stimulant of mitochondria that improves insulin sensitivity and enhances neuroplasticity. It has great potential as a non-pharmacological intervention against the onset and progression of obesity associated neurodegeneration. Here, we integrate the current knowledge of the mechanisms of neurodegenration in obesity and focus on brain insulin resistance to explain the relationship between the impairment of neuronal plasticity and mitochondrial dysfunction. This knowledge was synthesised to explore the exercise paradigm as a feasible intervention for obese neurodegenration in terms of improving brain insulin signals and regulating the mitochondrial quality control system.


Subject(s)
Brain , Exercise Therapy , Insulin Resistance , Mitochondria , Obesity , Humans , Obesity/therapy , Obesity/complications , Obesity/metabolism , Insulin Resistance/physiology , Mitochondria/metabolism , Brain/metabolism , Exercise Therapy/methods , Neurodegenerative Diseases/therapy , Animals
7.
J Food Prot ; 87(4): 100244, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38378071

ABSTRACT

Strawberries rapidly deteriorate postharvest, necessitating effective measures to extend their shelf life. This study focused on developing an eco-friendly chitosan-based protective film for strawberry preservation. Strawberries were treated with a coating solution containing varying concentrations of hawthorn leaf extract (HLE) (0.4%, 0.7%, and 1.0%), 1.5% chitosan (CH), and 1% acetic acid. The results demonstrated that coating strawberry fruit with 1% CH-HLE notably delayed fruit spoilage. In-depth analysis revealed that, compared with the uncoated strawberry fruits, the 1% CH-HLE coating effectively reduced weight loss, the respiration intensity, malondialdehyde (MDA) levels, and superoxide anion (O2·-) production. Additionally, the coated strawberries exhibited improved firmness, total soluble solids (TSS), vitamin C (Vc) content, titratable acidity (TA), and total phenolic compound (TPC) content. The enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in the CH-HLE-coated strawberries were greater than those in their uncoated counterparts. The application of a 1% CH-HLE coating successfully delayed spoilage and extend the shelf life of the strawberries by approximately 4-5 days. These findings suggest that CH-HLE has significant potential as a resource for protecting fruits and vegetables, offering an environmentally sustainable solution for postharvest preservation.


Subject(s)
Chitosan , Crataegus , Fragaria , Food Preservation/methods , Chitosan/pharmacology , Fruit , Plant Extracts/pharmacology
8.
Metabolism ; 152: 155787, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215964

ABSTRACT

Mitochondrial dysfunction plays a critical role in the pathogenesis of metabolic syndrome (MetS), affecting various cell types and organs. In MetS animal models, mitochondria exhibit decreased quality control, characterized by abnormal morphological structure, impaired metabolic activity, reduced energy production, disrupted signaling cascades, and oxidative stress. The aberrant changes in mitochondrial function exacerbate the progression of metabolic syndrome, setting in motion a pernicious cycle. From this perspective, reversing mitochondrial dysfunction is likely to become a novel and powerful approach for treating MetS. Unfortunately, there are currently no effective drugs available in clinical practice to improve mitochondrial function. Recently, L-lactate has garnered significant attention as a valuable metabolite due to its ability to regulate mitochondrial metabolic processes and function. It is highly likely that treating MetS and its related complications can be achieved by correcting mitochondrial homeostasis disorders. In this review, we comprehensively discuss the complex relationship between mitochondrial function and MetS and the involvement of L-lactate in regulating mitochondrial metabolism and associated signaling pathways. Furthermore, it highlights recent findings on the involvement of L-lactate in common pathologies of MetS and explores its potential clinical application and further prospects, thus providing new insights into treatment possibilities for MetS.


Subject(s)
Metabolic Syndrome , Mitochondrial Diseases , Animals , Metabolic Syndrome/metabolism , Lactic Acid/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Dietary Supplements , Power, Psychological
9.
Neurol Sci ; 45(4): 1419-1428, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38102519

ABSTRACT

In recent years, the stroke incidence has been increasing year by year, and the related sequelae after stroke, such as cognitive impairment, motor dysfunction, and post-stroke depression, seriously affect the patient's rehabilitation and daily activities. Repetitive transcranial magnetic stimulation (rTMS), as a safe, non-invasive, and effective new rehabilitation method, has been widely recognized in clinical practice. This article reviews the application and research progress of rTMS in treating different functional impairments (cognitive impairment, motor dysfunction, unilateral spatial neglect, depression) after stroke in recent years, and preliminary summarized the possible mechanisms. It has been found that the key parameters that determine the effectiveness of rTMS in improving post-stroke functional impairments include pulse number, stimulated brain areas, stimulation intensity and frequency, as well as duration. Generally, high-frequency stimulation is used to excite the ipsilateral cerebral cortex, while low-frequency stimulation is used to inhibit the contralateral cerebral cortex, thus achieving a balance of excitability between the two hemispheres. However, the specific mechanisms and the optimal stimulation mode for different functional impairments have not yet reached a consistent conclusion, and more research is needed to explore and clarify the best way to use rTMS. Furthermore, we will identify the issues and challenges in the current research, explore possible mechanisms to deepen understanding of rTMS, propose future research directions, and offer insightful insights for better clinical applications.


Subject(s)
Agnosia , Stroke Rehabilitation , Stroke , Humans , Transcranial Magnetic Stimulation , Stroke/complications , Stroke/therapy , Brain , Cerebral Cortex
10.
Heliyon ; 9(10): e20850, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37867830

ABSTRACT

Background and aims: Hepatitis B virus (HBV) is a common cause of hepatocellular carcinoma (HCC) in China, and this study aimed to identify high-risk factors for overall survival and develop a nomogram prediction model. Methods: In the present retrospective cohort study, patients with HBV-associated HCC diagnosed from January 2009 to December 2018 were enrolled. Their clinical characteristics and time-to-event information were retrieved from electronic medical records. The zero time was the date of HCC diagnosis, and the endpoint was death or liver transplantation. Multivariable COX proportional hazard regression was used to screen independent risk factors for overall survival; then a nomogram model was developed to predict the survival probability of HCC patients. Results: A total of 1723 patients were enrolled, with 82.7 % male and a median age of 54.0 years. During a median follow-up time of 41.3 months, 672 cases (39.0 %) died. Age ≥60 years (HR = 1.209), Male (HR = 1.293), ALB <35 g/L (HR = 1.491), AST ≥80 U/L (HR = 1.818); AFP 20-400 ng/mL (HR = 2.284), AFP ≥400 ng/mL (HR = 2.746); LSM 9-22 kPa (HR = 2.266), LSM ≥22 kPa (HR = 4.326); BCLC stage B/C (HR = 4.079) and BCLC stage D (HR = 16.830) were the independent high-risk factors associated with HCC survival. A prognostic nomogram with a consistency index of 0.842 (95 % CI: 0.827-0.858) was developed. The calibration curve for long-term survival rate fitted well. Conclusions: This study identified independent risk factors affecting the survival of patients with HBV-associated HCC and constructed a predictive nomogram model, which can individually predict the overall survival and has good clinical application value.

11.
Int Immunopharmacol ; 125(Pt A): 111091, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37883814

ABSTRACT

The MPLW515L mutation is a prevalent genetic mutation in patients with myeloproliferative neoplasms (MPN), and utilizing this mutation in mice model can provide important insights into the disease. However, the relationship between intestinal homeostasis and MPN mice model remains elusive. In this study, we utilized a retroviral vector to transfect hematopoietic stem cells with the MPLW515L mutation, creating mutated MPN mice model to investigate their intestinal status. Our results revealed that the MPLW515L in MPN mice model aggravated inflammation in the intestines, decreased the levels of tight junction proteins and receptors for bacteria metabolites. Additionally, there was increased activation of the caspase1/IL-1ß signaling pathway and a significant reduction in phos-p38 levels in the intestinal tissue in MPN mice. The MPLW515L mutation also led to up-expression of anti-microbial genes in the intestinal tract. Though the mutation had no impact on the alpha diversity and dominant bacterial taxa, it did influence the rare bacterial taxa/sub-communities and consequently impacted intestinal homeostasis. Our findings demonstrate the significance of MPLW515L mice model for studying MPN disease and highlight the mutation's influence on intestinal homeostasis, including inflammation, activation of the IL-1ß signaling pathway, and the composition of gut microbial communities.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Humans , Animals , Mice , Mutation , Signal Transduction , Disease Models, Animal , Janus Kinase 2/metabolism , Inflammation , Calreticulin/genetics , Calreticulin/metabolism , Receptors, Thrombopoietin
12.
JHEP Rep ; 5(11): 100856, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37791375

ABSTRACT

Background & Aims: Circadian rhythms play significant roles in immune responses, and many inflammatory processes in liver diseases are associated with malfunctioning molecular clocks. However, the significance of the circadian clock in autoimmune hepatitis (AIH), which is characterised by immune-mediated hepatocyte destruction and extensive inflammatory cytokine production, remains unclear. Methods: We tested the difference in susceptibility to the immune-mediated liver injury induced by concanavalin A (ConA) at various time points throughout a day in mice and analysed the effects of global, hepatocyte, or myeloid cell deletion of the core clock gene, Bmal1 (basic helix-loop-helix ARNT-like 1), on liver injury and inflammatory responses. Multiple molecular biology techniques and mice with macrophage-specific knockdown of Junb, a Bmal1 target gene, were used to investigate the involvement of Junb in the circadian control of ConA-induced hepatitis. Results: The susceptibility to ConA-induced liver injury is highly dependent on the timing of ConA injection. The treatment at Zeitgeber time 0 (lights on) triggers the highest mortality as well as the severest liver injury and inflammatory responses. Further study revealed that this timing effect was driven by macrophage, but not hepatocyte, Bmal1. Mechanistically, Bmal1 controls the diurnal variation of ConA-induced hepatitis by directly regulating the circadian transcription of Junb and promoting M1 macrophage activation. Inhibition of Junb in macrophages blunts the administration time-dependent effect of ConA and attenuates liver injury. Moreover, we demonstrated that Junb promotes macrophage inflammation by regulating AKT and extracellular signal-regulated kinase (ERK) signalling pathways. Conclusions: Our findings uncover a critical role of the Bmal1-Junb-AKT/ERK axis in the circadian control of ConA-induced hepatitis and provide new insights into the prevention and treatment of AIH. Impact and Implications: This study unveils a critical role of the Bmal1-Junb-AKT/ERK axis in the circadian control of ConA-induced liver injury, providing new insights into the prevention and treatment of immune-mediated hepatitis, including autoimmune hepatitis (AIH). The findings have scientific implications as they enhance our understanding of the circadian regulation of immune responses in liver diseases. Furthermore, clinically, this research offers opportunities for optimising treatment strategies in immune-mediated hepatitis by considering the timing of therapeutic interventions.

13.
Front Immunol ; 14: 1236812, 2023.
Article in English | MEDLINE | ID: mdl-37593743

ABSTRACT

The subject of this study was to explore the optimum requirements of loach (Paramisgurnus dabryanus) regarding dietary proteins and lipids and discuss the underlying mechanism. We designed nine diets to determine the effects of different levels of dietary crude protein (CP: 30%, 35%, and 40%) and ether extract (EE: 6%, 10%, and 14%) on the growth performance and metabolism of P. dabryanus. In total, 2160 healthy P. dabryanus (5.19 ± 0.01 g) were divided into nine groups with four replications at 60 fish per barrel stocking density. The trial lasted for eight weeks. Serum and liver samples were gathered for metabolomic and transcriptomic analyses. The results showed that the specific growth rate of P. dabryanus in the CP40EE10 group was the fastest and notably higher than that in other groups (P< 0.05). Analysis of the metabolome results found that the mTOR signaling pathway, glycerophospholipid metabolism, D-arginine and D-ornithine metabolism were significantly enriched pathways in the CP40EE10 group compared with the other groups (P< 0.05). Moreover, the transcriptomic analysis of differentially expressed genes (DEGs) showed that the expression of ARG (arginase) involved in protein synthesis was significantly upregulated in the CP40EE10 group compared to the slowest growing group (P< 0.05). Additionally, the expression of SPLA2 (secretory phospholipase A2) involved in lipid metabolism and FBP (fructose-1,6-bisphosphatase) involved in glucose metabolism were all significantly downregulated in the CP30EE6 group compared with the CP40EE10 group (P< 0.05). Furthermore, the analysis of differentially expressed metabolites (DEMs) and DEGs co-enriched in the KEGG pathway revealed that the significantly enriched pathways were arginine and proline metabolism, glycerophospholipid metabolism, and glycolysis/gluconeogenesis in CP40EE10 compared with other groups (P< 0.05). We conclude that including 40% CP and 10% EE in the P. dabryanus diet could result in a better growth rate. We hypothesized from metabolomic and transcriptomic analyses that the CP40EE10 diet might promote the growth of P. dabryanus by promoting protein synthesis, lipid metabolism, and energy production.


Subject(s)
Cypriniformes , Transcriptome , Animals , Cypriniformes/genetics , Arginine , Dietary Proteins , Glycerophospholipids , Lipids
14.
Dalton Trans ; 52(28): 9797-9808, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37401338

ABSTRACT

In this study, an expanded graphite (EG) with nano-CuS (EG/CuS) support material with a special morphology was prepared, with EG/CuS filled with different ratios of palmitic acid (PA). Finally, a PA/EG/CuS composite phase change thermal storage material with photothermal conversion performance was synthesized. The superb chemical and thermal stability of PA/EG/CuS was demonstrated by characterization and analysis of the experiments. EG, a multi-layer structured material, provides rich binding sites for PA and nano-CuS and constructs rich thermal conductivity paths, which effectively improves the thermal conductivity of PA/EG/CuS. It is noted that the maximum thermal conductivity of PA/EG/CuS reached 0.372 W m-1 K-1 and the maximum phase change thermal storage capacity reached 260.4 kJ kg-1, which proved the excellent thermal storage properties of PA/EG/CuS. In addition, PA/EG/CuS exhibits excellent photothermal conversion performance, and the experimental results demonstrated that the best photothermal conversion efficiency of PA/EG/CuS reached 81.4%. The PA/EG/CuS developed in this study provides a promising method for fabricating excellent conductive and low leakage composite phase change materials for solar energy utilization and energy storage.

15.
Glob Chang Biol ; 29(16): 4670-4685, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37221551

ABSTRACT

Continued current emissions of carbon dioxide (CO2 ) and methane (CH4 ) by human activities will increase global atmospheric CO2 and CH4 concentrations and surface temperature significantly. Fields of paddy rice, the most important form of anthropogenic wetlands, account for about 9% of anthropogenic sources of CH4 . Elevated atmospheric CO2 may enhance CH4 production in rice paddies, potentially reinforcing the increase in atmospheric CH4 . However, what is not known is whether and how elevated CO2 influences CH4 consumption under anoxic soil conditions in rice paddies, as the net emission of CH4 is a balance of methanogenesis and methanotrophy. In this study, we used a long-term free-air CO2 enrichment experiment to examine the impact of elevated CO2 on the transformation of CH4 in a paddy rice agroecosystem. We demonstrate that elevated CO2 substantially increased anaerobic oxidation of methane (AOM) coupled to manganese and/or iron oxides reduction in the calcareous paddy soil. We further show that elevated CO2 may stimulate the growth and metabolism of Candidatus Methanoperedens nitroreducens, which is actively involved in catalyzing AOM when coupled to metal reduction, mainly through enhancing the availability of soil CH4 . These findings suggest that a thorough evaluation of climate-carbon cycle feedbacks may need to consider the coupling of methane and metal cycles in natural and agricultural wetlands under future climate change scenarios.


Subject(s)
Oryza , Soil , Humans , Carbon Dioxide/analysis , Anaerobiosis , Methane/metabolism , Agriculture , Oryza/metabolism
16.
Anim Nutr ; 13: 229-239, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37168447

ABSTRACT

The aim of this study was to examine the effects of dietary protein and lipid levels on the growth performance and homeostasis of the intestinal flora in Paramisgurnus dabryanus. An 8-wk 3 × 3 two-factorial experiment was conducted to investigate the interaction between dietary crude protein (CP: 30%, 35%, 40%) and ether extract (EE: 6%, 10%, 14%) on the growth rate and the intestinal microflora of P. dabryanus. A total of 2,160 fish (5.19 ± 0.01 g) were randomly allotted to 36 aquariums each with 60 fish. Fish were fed the experimental diet twice daily. Results revealed that weight gain rate (WGR), specific growth rate (SGR), protein efficiency ratio and net protein utilization significantly increased when increasing protein levels from 30% to 40% (P < 0.05). Both WGR and SGR enhanced first but reduced thereafter with maximum value at 10% lipid level as dietary lipid increased from 6% to 14% (P < 0.05). Significant interactions between protein and lipid were found with feed conversion rate, lipid efficiency ratio and net lipid utilization (P < 0.05). At the phylum level, Proteobacteria and Actinobacteria were the dominant bacteria; at the genus level, Burkholderia-Caballeronia-Paraburkholderia was the dominant bacteria. Fish fed the diet containing 10% lipid had a higher abundance of Proteobacteria and unclassified_f_Eenterobacteriaceae than those fed the 14% lipid diet, and a higher abundance of Rhodobacter than those fed the 6% lipid diet (P < 0.05). Analysis of the predicted functions showed that metabolism in the intestine of fish in the CP40EE10 group was more active than that in CP30EE14 group. Polynomial regression analysis found that a diet containing 40.87% protein and 9.88% lipid can be considered optimal for P. dabryanus.

17.
Small Methods ; 7(6): e2201593, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36895071

ABSTRACT

Regulating the ranking of polymer in triboelectric series over a wide range is of great help for material's selection of triboelectric nanogenerators (TENGs). Herein, fluorinated poly(phthalazinone ether)s (FPPEs) with tunable molecular structure and aggregate structure are synthesized by co-polycondensation, while the large positive ranking shift in the triboelectric series can be achieved by introducing phthalazinone moieties with strong electron donating capability. FPPE-5, which includes abundant phthalazinone moieties, is more positive than all of the previously reported triboelectric polymers. Hence, the regulating range of FPPEs in this work updates a new record in triboelectric series, which is wider than that of previous works. A peculiar crystallization behavior, capable of trapping and storing more electrons, has been observed in FPPE-2 with 25% phthalazinone moieties. Correspondingly, FPPE-2 is more negative than FPPE-1 without a phthalazinone moiety, which is an unexpected shift against the common changing tendency in triboelectric series. With FPPEs films as the probing material, a tactile TENG sensor is applied to enable material identification via electrical signal polarity. Hence, this study demonstrates a strategy to regulate the series of triboelectric polymers by copolymerization using monomers with distinct electrification capabilities, where both the monomer ratio and the peculiar nonlinear behavior can control triboelectric performance.

18.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166572, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36252941

ABSTRACT

Recent studies suggest that deletion of the core clock gene Bmal1 in the kidney has a significant influence on renal physiological functions. However, the role of renal Bmal1 in chronic kidney disease (CKD) remains poorly understood. Here by generating mice lacking Bmal1 in proximal tubule (Bmal1flox/flox-KAP-Cre+, ptKO) and inducing CKD with the adenine diet model, we found that lack of Bmal1 in proximal tubule did not alter renal water and electrolyte homeostasis. However, adenine-induced renal injury indexes, including blood urea nitrogen, serum creatinine, and proteinuria, were markedly augmented in the ptKO mice. The ptKO kidneys also developed aggravated tubulointerstitial fibrosis and epithelial-mesenchymal transformation. Mechanistically, RNAseq analysis revealed significant downregulation of the expression of genes related to energy and substance metabolism, in particular fatty acid oxidation and glutathione/homocysteine metabolism, in the ptKO kidneys. Consistently, the renal contents of ATP and glutathione were markedly reduced in the ptKO mice, suggesting the disruption of cellular metabolic homeostasis. Moreover, we demonstrated that Bmal1 can activate the transcription of cystathionine ß-synthase (CBS), a key enzyme for homocysteine metabolism and glutathione biosynthesis, through direct recruitment to the E-box motifs of its promoter. Supporting the in vivo findings, knockdown of Bmal1 in cultured proximal tubular cells inhibited CBS expression and amplified albumin-induced cell injury and fibrogenesis, while glutathione supplementation remarkably reversed these changes. Taken together, we concluded that deletion of Bmal1 in proximal tubule may aggravate chronic kidney injury and exacerbate renal fibrosis, the mechanism is related to suppressing CBS transcription and disturbing glutathione related metabolic homeostasis. These findings suggest a protective role of Bmal1 in chronic tubular injury and offer a novel target for treating CKD.


Subject(s)
Kidney , Renal Insufficiency, Chronic , Mice , Animals , Kidney/pathology , Fibrosis , Renal Insufficiency, Chronic/pathology , Homeostasis , Adenine , Glutathione/metabolism , Homocysteine/metabolism
19.
Int J Med Mushrooms ; 24(10): 15-29, 2022.
Article in English | MEDLINE | ID: mdl-36374827

ABSTRACT

Considering the impact of oxidative stress on the development of many diseases, together with the role of natural antioxidants in maintaining physiological balance in humans, medicinal mushrooms are potential sources of bioactive compounds against many diseases. In the present work, in vitro evaluation of the biological activities of the alcoholic extracts of two wild tree mushrooms, namely, Ganoderma applanatum and Fomitopsis pinicola, has been performed. Extraction of G. applanatum (GAE) and F. pinicola (FPE) was conducted with 60% ethanol and 100% ethanol sequentially. UPLC-MS/MS identification was conducted on the two mushrooms extracts. A total of 15 substances were identified in GAE, including 3 spiro meroterpenoids and 12 triterpenoids; a total of 14 chemical constituents were iden¬tified in FPE, including 8 triterpenoids, 4 triterpene glycosides, 1 lanosterol, and 1 lanostanoid. The resulting extracts were examined for their in vitro antioxidative and cytoprotective effects against AAPH-induced oxidative damage. Our results demonstrated that both extracts have potent antioxidative activities, when GAE was 0.2 mg/mL, the clearance rates of DPPH and ABTS have reached 93.34% and 99.93%, respectively. When FPE was 1.4 mg/mL and 0.6 mg/mL, the scavenging rates of DPPH and ABTS have reached 91.76% and 100%, respectively. Both the alcoholic extracts of G. applanatum and F. pinicola were able to protect the AAPH-induced damage and could effectively inhibit cell aging via ß-galactosidase (SA ß-gal) staining activity test and scanning electron microscopy analysis.


Subject(s)
Adrenal Gland Neoplasms , Agaricales , Ganoderma , Pheochromocytoma , Triterpenes , Humans , Antioxidants/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Agaricales/chemistry , Triterpenes/chemistry , Ethanol
20.
Phys Chem Chem Phys ; 24(44): 27105-27113, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36330965

ABSTRACT

Endotaxial nanostructures can reduce lattice thermal conductivity through enhancing phonon scattering without affecting electrical transport, leading to a high thermoelectric performance. On the other hand, band engineering can enhance electrical transport by improving the Seebeck coefficient through valence band convergence and the resonance level. In this paper, the synergistic effect of band engineering and endotaxial nanostructures was implemented in SnTe thermoelectric materials by alloying with AgCuTe and doping with Indium. The positron annihilation lifetime spectra show that the vacancy concentration in SnTe was reduced after alloying with AgCuTe, which led to a decreasing hole concentration and improved carrier mobility. Additionally, the diffusion of Ag in the matrix during the preparation can facilitate valence band convergence. Therefore, the power factor of SnTe is greatly increased to 18 µW cm-1 K-2 at 800 K, which can be further increased to 21.4 µW cm-1 K-2 at 800 K after In doping due to resonance level formation. Meanwhile, Cu2Te endotaxial nanostructures also can be observed in the TEM image after SnTe alloying with AgCuTe. So, the lattice thermal conductivity significantly reduced to 0.93 W m-1 K -1 in In-doped and AgCuTe-alloyed SnTe. Finally, we obtain an enhanced ZT value of 1.14 in Sn1.02In0.01Te-1%AgCuTe at 800 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...