Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 11(1): 1753, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462305

ABSTRACT

ApxI exotoxin is an important virulence factor derived from Actinobacillus pleuropneumoniae that causes pleuropneumonia in swine. Here, we investigate the role of lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18), a member of the ß2 integrin family, and the involvement of the integrin signaling molecules focal adhesion kinase (FAK) and Akt in ApxI cytotoxicity. Using Western blot analysis, we found that ApxI downregulated the activity of FAK and Akt in porcine alveolar macrophages (AMs). Preincubation of porcine AMs with an antibody specific for porcine CD18 reduced ApxI-induced cytotoxicity as measured by a lactate dehydrogenase release assay and decreased ApxI-induced FAK and Akt attenuation, as shown by Western blot analysis. Pretreatment with the chemical compounds PMA and SC79, which activate FAK and Akt, respectively, failed to overcome the ApxI-induced attenuation of FAK and Akt and death of porcine AMs. Notably, the transfection experiments revealed that ectopic expression of porcine LFA-1 (pLFA-1) conferred susceptibility to ApxI in ApxI-insensitive cell lines, including human embryonic kidney 293T cells and FAK-deficient mouse embryonic fibroblasts (MEFs). Furthermore, ectopic expression of FAK significantly reduced ApxI cytotoxicity in pLFA-1-cotransfected FAK-deficient MEFs. These findings show for the first time that pLFA-1 renders cells susceptible to ApxI and ApxI-mediated attenuation of FAK activity via CD18, thereby contributing to subsequent cell death.


Subject(s)
Actinobacillus Infections/pathology , Actinobacillus pleuropneumoniae/metabolism , Bacterial Proteins/metabolism , Focal Adhesion Kinase 1/antagonists & inhibitors , Hemolysin Proteins/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Swine Diseases/pathology , Actinobacillus Infections/metabolism , Actinobacillus Infections/microbiology , Actinobacillus pleuropneumoniae/isolation & purification , Actinobacillus pleuropneumoniae/pathogenicity , Animals , Cell Death/physiology , Cells, Cultured , Focal Adhesion Kinase 1/metabolism , Humans , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Mice , Proto-Oncogene Proteins c-akt/metabolism , Swine , Swine Diseases/metabolism , Swine Diseases/microbiology
3.
J Exp Bot ; 70(18): 4657-4670, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31552430

ABSTRACT

Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism.


Subject(s)
Autophagy , Nicotiana/physiology , Nicotiana/virology , Potexvirus/physiology , Virus Replication , Chloroplasts/metabolism , Plant Diseases/virology
4.
Vet Microbiol ; 195: 128-135, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27771058

ABSTRACT

Actinobacillus pleuropneumoniae is a crucial respiratory pathogen that causes fibrinous, hemorrhagic, necrotizing pleuropneumonia in pigs. A. pleuropneumoniae exotoxins (ApxI to IV) are the major virulence factors contributing to A. pleuropneumoniae pathogenesis. Previously, we demonstrated that ApxI induces the expression of proinflammatory cytokines in porcine alveolar macrophages (PAMs) via the mitogen-activated protein kinases (MAPKs) p38 and cJun NH2-terminal kinase (JNK). Nonetheless, the role of nuclear factor (NF)-κB-a transcription factor widely implicated in immune and inflammatory responses-in ApxI-elicited cytokine production has yet to be defined. In the present study, we examined the involvement of NF-κB in ApxI-elicited production of interleukin (IL)-1ß, IL-8, and tumor necrosis factor (TNF)-α in PAMs and investigated the correlation between NF-κB and MAPK (p38 and JNK) pathways in this event. The results of Western blot analysis, confocal microscopy, and a DNA binding activity assay revealed that the classical NF-κB pathway was activated by ApxI, as evidenced by the decreased levels of IκB and subsequent NF-κB translocation and activation in ApxI-stimulated PAMs. Moreover, the blocking of ApxI-induced NF-κB activation significantly attenuated the levels of mRNA and protein secretion of IL-1ß, IL-8, and TNF-α in PAMs. Notably, the attenuation of JNK activation by a specific inhibitor (SP600125) reduced ApxI-induced NF-κB activation, whereas a p38 blocker (SB203580) had no effect on the NF-κB pathway. Further examination revealed that the level of phosphorylation at serine 536 on the NF-κB p65 subunit was dependent on JNK activity. Collectively, this study, for the first time, demonstrates a pivotal role of NF-κB in ApxI-induced IL-1ß, IL-8, and TNF-α production; JNK, but not p38, may positively affect the activation of the classical NF-κB pathway.


Subject(s)
Actinobacillus pleuropneumoniae/metabolism , Cytokines/metabolism , Exotoxins/pharmacology , Macrophages, Alveolar/metabolism , NF-kappa B/metabolism , Swine , Animals , CD18 Antigens , Cytokines/genetics , Gene Expression Regulation, Bacterial/physiology , Inflammation/metabolism , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Macrophages, Alveolar/microbiology , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...