Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 390
Filter
1.
Phytochem Anal ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837823

ABSTRACT

BACKGROUND: Radix Aconiti Lateralis (Fuzi), a mono-herbal preparation of Aconitum herbs in the genus Aconitum, is commonly used in traditional Chinese medicine (TCM) to treat critical illnesses. The curative effect of Fuzi is remarkable. However, the toxic effects of Fuzi are still a key clinical focus, and the substances inducing nephrotoxicity are still unclear. Therefore, this study proposes a research model combining "in vitro and in vivo component mining-virtual multi-target screening-active component prediction-literature verification" to screen potential nephrotoxic substances rapidly. METHOD: The UHPLC-Q-Exactive-Orbitrap MS analysis method was used for the correlation analysis of Fuzi's in vitro-in vivo chemical substance groups. On this basis, the key targets of nephrotoxicity were screened by combining online disease databases and a protein-protein interaction (PPI) network. The computer screening technique was used to verify the binding mode and affinity of Fuzi's components with nephrotoxic targets. Finally, the potential material basis of Fuzi-induced nephrotoxicity was screened. RESULTS: Eighty-one Fuzi components were identified. Among them, 35 components were absorbed into the blood. Based on the network biology method, 21 important chemical components and three potential key targets were screened. Computer virtual screening revealed that mesaconine, benzoylaconine, aconitine, deoxyaconitine, hypaconitine, benzoylhypaconine, benzoylmesaconine, and hypaconitine may be potential nephrotoxic substances of Fuzi. CONCLUSIONS: Fuzi may interact with multiple components and targets in the process of inducing nephrotoxicity. In the future, experiments can be designed to explore further. This study provides a reference for screening Fuzi nephrotoxic components and has certain significance for the safe use of Fuzi.

2.
Bioact Mater ; 37: 549-562, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38756420

ABSTRACT

Zinc (Zn) alloys have demonstrated significant potential in healing critical-sized bone defects. However, the clinical application of Zn alloys implants is still hindered by challenges including excessive release of zinc ions (Zn2+), particularly in the early stage of implantation, and absence of bio-functions related to complex bone repair processes. Herein, a biodegradable aliphatic polycarbonate drug-eluting coating was fabricated on zinc-lithium (Zn-Li) alloys to inhibit Zn2+ release and enhance the osteogenesis, angiogenesis, and bacteriostasis of Zn alloys. Specifically, the photo-curable aliphatic polycarbonates were co-assembled with simvastatin and deposited onto Zn alloys to produce a drug-loaded coating, which was crosslinked by subsequent UV light irradiation. During the 60 days long-term immersion test, the coating showed distinguished stable drug release and Zn2+ release inhibition properties. Benefiting from the regulated release of Zn2+ and simvastatin, the coating facilitated the adhesion, proliferation, and differentiation of MC3T3-E1 cells, as well as the migration and tube formation of EA.hy926 cells. Astonishingly, the coating also showed remarkable antibacterial properties against both S. aureus and E. coli. The in vivo rabbit critical-size femur bone defects model demonstrated that the drug-eluting coating could efficiently promote new bone formation and the expression of platelet endothelial cell adhesion molecule-1 (CD31) and osteocalcin (OCN). The enhancement of osteogenesis, angiogenesis, and bacteriostasis is achieved by precisely controlling of the released Zn2+ at an appropriate level, as well as the stable release profile of simvastatin. This tailored aliphatic polycarbonate drug-eluting coating provides significant potential for clinical applications of Zn alloys implants.

3.
Ann Diagn Pathol ; 72: 152321, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38759563

ABSTRACT

Retroperitoneal Ewing sarcomas (RES) are very rare and mostly described in case reports. The purpose of this study was to retrospectively analyze the clinicopathology, molecular characteristics, biological behavior, and therapeutic information of 13 cases of primary RES with immunohistochemical staining, fluorescence in situ hybridization, RT-PCR and NGS sequencing detection techniques. The thirteen patients included eight males and five females with a mean age of 34 years. Morphologically, the tumors were comprised of small round or epithelial-like cells with vacuolated cytoplasm (6/13,46 %) arranged in diffuse, nested (8/13,62 %) and perivascular (7/13,54 %) patterns. Unusual morphologic patterns, such as meningioma-like swirling structures and sieve-like structures were relatively novel findings. Immunohistochemical studies showed CD99 (12/13; 92 %), CD56 (11/13; 85 %), NKX2.2 (9/13; 69 %), PAX7 (10/11;91 %) and CD117(6/9;67 %) to be positive.12 cases (92 %) demonstrated EWSR1 rearrangement and 3 cases displayed EWSR1::FLI1 fusion by FISH. ERCC4 splice-site variant, a novel pathogenic variant, was discovered for the first time via RNA sequencing. With a median follow-up duration of 14 months (6 to 79 months), 8/13 (62 %) patients died, while 5/13(38 %) survived. Three cases recurred, and five patients developed metastasis to the liver (2 cases), lung (2 cases) and bone (1 case). RES is an aggressive, high-grade tumor, prone to multiple recurrences and metastases, with distinctive morphologic, immunohistochemical, and molecular genetic features. ERCC4 splicing mutation, which is a novel pathogenic variant discovered for the first time, with possible significance for understanding the disease, as well as the development of targeted drugs.

4.
Adv Mater ; : e2404824, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733312

ABSTRACT

Rational molecular design and suitable device engineering are two important strategies to boost the efficiencies in organic solar cells (OSCs). Yet these two approaches are independently developed, while their synergy is believed to be more productive. Herein, a branched polyfluoride moiety, heptafluoroisopropoxyl group, is introduced into the side chains of conjugated polymers for the first time. Compared with the conventional alkyl chain, this polyfluoride chain can endow the resulting polymer namely PF7 with highly packing order and strong crystallinity owing to the strong polarization and fluorine-induced interactions, while good solubility and moderate miscibility are retained. As a result, PF7 comprehensively outperforms the state-of-the-art polymer PM6 in photovoltaic properties. More importantly, based on the solubility of heptafluoroisopropoxyl groups in fluorous solvents, a new post-treatment denoted as fluorous solvent vapor annealing (FSVA) is proposed to match PF7. Differing from the existing post-treatments, FSVA can selectively reorganize fluoropolymer molecules but less impact small molecules in blend films. By employing the synergy of fluoropolymer and fluorous solvent, the device achieves a remarkable efficiency of 19.09%, which is among the best efficiencies in binary OSCs. The polymer PF7 and the FSVA treatment exhibit excellent universality in various OSCs with different material combinations or device architectures.

5.
Heliyon ; 10(10): e30527, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38778981

ABSTRACT

Objective: It's crucial to identify an easily detectable biomarker that is specific to radiation injury in order to effectively classify injured individuals in the early stage in large-scale nuclear accidents. Methods: C57BL/6J mice were subjected to whole-body and partial-body γ irradiation, as well as whole-body X-ray irradiation to explore the response of serum sSelectin-L to radiation injury. Then, it was compared with its response to lipopolysaccharide-induced acute infection and doxorubicin-induced DNA damage to study the specificity of sSelectin-L response to radiation. Furthermore, it was further evaluated in serum samples from nasopharyngeal carcinoma patients before and after radiotherapy. Simulated rescue experiments using Amifostine or bone marrow transplantation were conducted in mice with acute radiation syndrome to determine the potential for establishing sSelectin-L as a prognostic marker. The levels of sSelectin-L were dynamically measured using the ELISA method. Results: Selectin-L is mainly expressed in hematopoietic tissues and lymphatic tissues. Mouse sSelectin-L showed a dose-dependent decrease from 1 day after irradiation and exhibited a positive correlation with lymphocyte counts. Furthermore, the level of sSelectin-L reflected the degree of radiation injury in partial-body irradiation mice and in nasopharyngeal carcinoma patients. sSelectin-L was closely related to the total dose of γ or X ray. There was no significant change in the sSelectin-L levels in mice intraperitoneal injected with lipopolysaccharide or doxorubicin. The sSelectin-L was decreased slower and recovered faster than lymphocyte count in acute radiation syndrome mice treated with Amifostine or bone marrow transplantation. Conclusions: Our study shows that sSelectin-L has the potential to be an early biomarker to classify injured individuals after radiation accidents, and to be a prognostic indicator of successful rescue of radiation victims.

6.
J Acoust Soc Am ; 155(5): 3410-3425, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38780198

ABSTRACT

The probability distribution of three-dimensional sound speed fields (3D SSFs) in an ocean region encapsulates vital information about their variations, serving as valuable data-driven priors for SSF inversion tasks. However, learning such a distribution is challenging due to the high dimensionality and complexity of 3D SSFs. To tackle this challenge, we propose employing the diffusion model, a cutting-edge deep generative model that has showcased remarkable performance in diverse domains, including image and audio processing. Nonetheless, applying this approach to 3D ocean SSFs encounters two primary hurdles. First, the lack of publicly available well-crafted 3D SSF datasets impedes training and evaluation. Second, 3D SSF data consist of multiple 2D layers with varying variances, which can lead to uneven denoising during the reverse process. To surmount these obstacles, we introduce a novel 3D SSF dataset called 3DSSF, specifically designed for training and evaluating deep generative models. In addition, we devise a high-capacity neural architecture for the diffusion model to effectively handle variations in 3D sound speeds. Furthermore, we employ state-of-the-art continuous-time-based optimization method and predictor-corrector scheme for high-performance training and sampling. Notably, this paper presents the first evaluation of the diffusion model's effectiveness in generating 3D SSF data. Numerical experiments validate the proposed method's strong ability to learn the underlying data distribution of 3D SSFs, and highlight its effectiveness in assisting SSF inversion tasks and subsequently characterizing the transmission loss of underwater acoustics.

7.
J Acoust Soc Am ; 155(5): 3475-3489, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38785598

ABSTRACT

Reconstructing a three-dimensional ocean sound speed field (SSF) from limited and noisy measurements presents an ill-posed and challenging inverse problem. Existing methods used a number of pre-specified priors (e.g., low-rank tensor and tensor neural network structures) to address this issue. However, the SSFs are often too complex to be accurately described by these pre-defined priors. While utilizing neural network-based priors trained on historical SSF data may be a viable workaround, acquiring SSF data remains a nontrivial task. This work starts with a key observation: Although natural images and SSFs admit fairly different characteristics, their denoising processes appear to share similar traits-as both remove random components from more structured signals. This observation allows us to incorporate deep denoisers trained using extensive natural images to realize zero-shot SSF reconstruction, without any extra training or network modifications. To implement this idea, an alternating direction method of multipliers (ADMM) algorithm using such a deep denoiser is proposed, which is reminiscent of the plug-and-play scheme from medical imaging. Our plug-and-play framework is tailored for SSF recovery such that the learned denoiser can be simultaneously used with other handcrafted SSF priors. Extensive numerical studies show that the new framework largely outperforms state-of-the-art baselines, especially under widely recognized challenging scenarios, e.g., when the SSF samples are taken as tensor fibers. The code is available at https://github.com/OceanSTARLab/DeepPnP.

8.
Autoimmunity ; 57(1): 2345919, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38721693

ABSTRACT

Dual-specificity phosphatase 12 (DUSP12) is abnormally expressed under various pathological conditions and plays a crucial role in the pathological progression of disorders. However, the role of DUSP12 in cerebral ischaemia/reperfusion injury has not yet been investigated. This study explored the possible link between DUSP12 and cerebral ischaemia/reperfusion injury using an oxygen-glucose deprivation/reoxygenation (OGD/R) model. Marked decreases in DUSP12 levels have been observed in cultured neurons exposed to OGD/R. DUSP12-overexpressed neurons were resistant to OGD/R-induced apoptosis and inflammation, whereas DUSP12-deficient neurons were vulnerable to OGD/R-evoked injuries. Further investigation revealed that DUSP12 overexpression or deficiency affects the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) in neurons under OGD/R conditions. Moreover, blockade of ASK1 diminished the regulatory effect of DUSP12 deficiency on JNK and p38 MAPK activation. In addition, DUSP12-deficiency-elicited effects exacerbating neuronal OGD/R injury were reversed by ASK1 blockade. In summary, DUSP12 protects against neuronal OGD/R injury by reducing apoptosis and inflammation through inactivation of the ASK1-JNK/p38 MAPK pathway. These findings imply a neuroprotective function for DUSP12 in cerebral ischaemia/reperfusion injury.


Subject(s)
Apoptosis , Dual-Specificity Phosphatases , Glucose , Inflammation , MAP Kinase Kinase Kinase 5 , Neurons , Oxygen , Reperfusion Injury , p38 Mitogen-Activated Protein Kinases , Animals , Mice , Cells, Cultured , Dual-Specificity Phosphatases/metabolism , Dual-Specificity Phosphatases/genetics , Glucose/metabolism , Inflammation/metabolism , Inflammation/pathology , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Signaling System , Neurons/metabolism , Neurons/pathology , Oxygen/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction , Mitogen-Activated Protein Kinase 14
9.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38801703

ABSTRACT

Micro ribonucleic acids (miRNAs) play a pivotal role in governing the human transcriptome in various biological phenomena. Hence, the accumulation of miRNA expression dysregulation frequently assumes a noteworthy role in the initiation and progression of complex diseases. However, accurate identification of dysregulated miRNAs still faces challenges at the current stage. Several bioinformatics tools have recently emerged for forecasting the associations between miRNAs and diseases. Nonetheless, the existing reference tools mainly identify the miRNA-disease associations in a general state and fall short of pinpointing dysregulated miRNAs within a specific disease state. Additionally, no studies adequately consider miRNA-miRNA interactions (MMIs) when analyzing the miRNA-disease associations. Here, we introduced a systematic approach, called IDMIR, which enabled the identification of expression dysregulated miRNAs through an MMI network under the gene expression context, where the network's architecture was designed to implicitly connect miRNAs based on their shared biological functions within a particular disease context. The advantage of IDMIR is that it uses gene expression data for the identification of dysregulated miRNAs by analyzing variations in MMIs. We illustrated the excellent predictive power for dysregulated miRNAs of the IDMIR approach through data analysis on breast cancer and bladder urothelial cancer. IDMIR could surpass several existing miRNA-disease association prediction approaches through comparison. We believe the approach complements the deficiencies in predicting miRNA-disease association and may provide new insights and possibilities for diagnosing and treating diseases. The IDMIR approach is now available as a free R package on CRAN (https://CRAN.R-project.org/package=IDMIR).


Subject(s)
Computational Biology , Gene Regulatory Networks , MicroRNAs , Urinary Bladder Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Computational Biology/methods , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Gene Expression Profiling , Female , Gene Expression Regulation, Neoplastic
10.
Light Sci Appl ; 13(1): 119, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802363

ABSTRACT

Nonlinear optical activities, especially second harmonic generation (SHG), are key phenomena in inversion-symmetry-broken two-dimensional (2D) transition metal dichalcogenides (TMDCs). On the other hand, anisotropic nonlinear optical processes are important for unique applications in nano-nonlinear photonic devices with polarization functions, having become one of focused research topics in the field of nonlinear photonics. However, the strong nonlinearity and strong optical anisotropy do not exist simultaneously in common 2D materials. Here, we demonstrate strong second-order and third-order susceptibilities of 64 pm/V and 6.2×10-19 m2/V2, respectively, in the even-layer PdPSe, which has not been discovered in other common TMDCs (e.g., MoS2). Strikingly, it also simultaneously exhibited strong SHG anisotropy with an anisotropic ratio of ~45, which is the largest reported among all 2D materials to date, to the best of our knowledge. In addition, the SHG anisotropy ratio can be harnessed from 0.12 to 45 (375 times) by varying the excitation wavelength due to the dispersion of χ ( 2 ) values. As an illustrative example, we further demonstrate polarized SHG imaging for potential applications in crystal orientation identification and polarization-dependent spatial encoding. These findings in 2D PdPSe are promising for nonlinear nanophotonic and optoelectronic applications.

11.
ISA Trans ; 149: 178-195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714374

ABSTRACT

This research presents a novel approach called 'Time-to-target-based multi-missile spatio-temporal cooperative guidance' This approach enables the simultaneous guidance of multiple missiles, allowing them to intercept a maneuvering target from different terminal intercept angles to maximize damage. The article introduces a finite-time optimal cooperative guidance technique to reduce the load on missile engines in the line-of-sight (LOS) direction. It proposes a time-varying sliding mode guidance scheme, which is parameterized by the remaining flight time, for both longitudinal and lateral LOS directions. The scheme helps prevent excessive initial acceleration in the longitudinal and lateral LOS directions while ensuring intercept angle constraints. The time-varying cooperative guidance law proposed in this study enables the simultaneous interception of a maneuvering target with different terminal intercept angles at the moment of terminal intercept. The numerical simulation results indicate that the multi-missile spatio-temporal cooperative guidance method is effective, superior, and robust. The method enables multiple missiles to achieve the minimum acceptable intercept distance at different terminal intercept angles while optimizing fuel in the LOS direction.

12.
Front Psychiatry ; 15: 1339558, 2024.
Article in English | MEDLINE | ID: mdl-38721616

ABSTRACT

Introduction: Patients with alcohol use disorder (AUD) often experience repeated withdrawal. Impulsivity is the most relevant factor influencing successful withdrawal. Brain-derived neurotrophic factor (BNDF) and fibroblast growth factor 21 (FGF21) are associated with impulsivity. Previous studies on the differential effects of BDNF or FGF21 on impulsivity have focused on single-gene effects and have inconsistent results. We aim to investigate the effects of BDNF rs6265 and FGF21 rs11665896, individually and together, on impulsivity during alcohol withdrawal in patients with AUD. Methods: We recruited 482 adult Han Chinese males with AUD and assessed their impulsivity using the Barratt Impulsivity Scale. Genomic DNA was extracted and genotyped from peripheral blood samples. Statistical analysis was conducted on the data. Results: The T-test and 2 × 2 analysis of variance were used to investigate the effects of the genes on impulsivity. There was a significant BDNF × FGF21 interaction on no-planning impulsiveness (F = 9.15, p = 0.003, η2p = 0.03). Simple main effects analyses and planned comparisons showed that BDNF rs6265 A allele × FGF21 rs11665896 T allele was associated with higher no-planning impulsiveness. Finally, hierarchical regression analyses revealed that only the interaction of BDNF and FGF21 accounted for a significant portion of the variance in no-planning impulsiveness. Conclusion and significance: The combination of BDNF rs6265 A allele and FGF21 rs11665896 T allele may increase impulsivity and discourage alcohol withdrawal. Our study provides a possible genetic explanation for the effects of associated impulsivity in patients with AUD from the perspective of gene-gene interactions.

13.
Free Radic Biol Med ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797339

ABSTRACT

PURPOSE: Severe dry eye disease causes ocular surface damage, which is highly associated with mitochondrial dysfunction. Mitochondrial transcription factor A (TFAM) is essential for packaging mitochondrial DNA (mtDNA) and is crucial for maintaining mitochondrial function. Herein, we aimed to explore the effect of a decreased TFAM expression on ocular surface damage. METHODS: Female C57BL/6 mice were induced ocular surface injury by topical administrating benzalkonium chloride (BAC). Immortalized human corneal epithelial cells (HCECs) were stimulated by tert-butyl hydroperoxide (t-BHP) to create oxidative stress damage. HCECs with TFAM knockdown were established. RNA sequencing was employed to analyze the whole-genome expression. Mitochondrial changes were measured by transmission electron microscopy, Seahorse metabolic flux analysis, mitochondrial membrane potential, and mtDNA copy number. TFAM expression and inflammatory cytokines were determined using RT-qPCR, immunohistochemistry, immunofluorescence, and immunoblotting. RESULTS: In both the corneas of BAC-treated mice and t-BHP-induced HCECs, we observed impaired TFAM expression, accompanied by mitochondrial structure and function defects. TFAM downregulation in HCECs suppressed mitochondrial respiratory capacity, reduced mtDNA content, induced mtDNA leakage into the cytoplasm, and led to inflammation. RNA sequencing revealed the absent in melanoma 2 (AIM2) inflammasome was activated in the corneas of BAC-treated mice. The AIM2 inflammasome activation was confirmed in TFAM knockdown HCECs. TFAM knockdown in t-BHP-stimulated HCECs aggravated mitochondrial dysfunction and the AIM2 inflammasome activation, thereby further triggering the secretion of inflammatory factors such as interleukin (IL) -1ß and IL-18. CONCLUSIONS: TFAM reduction impaired mitochondrial function, activated AIM2 inflammasome and promoted ocular surface inflammation, revealing an underlying molecular mechanism for ocular surface disorders.

14.
Int Ophthalmol ; 44(1): 168, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573375

ABSTRACT

PURPOSE: To investigate the change in tear production associated with general anesthesia and the protective effect of vitamin A palmitate eye gel on the ocular surface during general anesthesia. METHODS: This double-blind, randomized clinical trial included patients undergoing non-ophthalmic surgery under general anesthesia who randomly received vitamin A palmitate eye gel and taping for one eye (Group A, n = 60) or taping alone for the other eye (Group B, n = 60). Symptom assessment in dry eye (SANDE) score, tear film break-up time (TBUT), corneal fluorescein staining (CFS) score, and Schirmer tear test I (STT-1) were analyzed under a hand-held slit lamp before anesthesia (T0), 0.5 h postoperatively (T1), and 24 h postoperatively (T2). RESULTS: At 0.5 h postoperatively, an increase in CFS score was observed in both groups (P < 0.05 in Group A and P < 0.01 in Group B), and the participants in Group A had less corneal abrasions than those in Group B. STT-1 significantly increased in Group A (P < 0.05), while it significantly decreased in Group B (P < 0.001). The changes between the two groups were statistically significant (P < 0.001). At 24 h postoperatively, both CFS score and STT-1 almost returned to baseline levels in the two groups. In both groups, the SANDE score and TBUT showed little change at 0.5 h and 24 h postoperatively (all P > 0.05). CONCLUSION: Vitamin A palmitate eye gel effectively protected the ocular surface and aqueous supplementation during general anesthesia. TRIAL REGISTRATION: This study was registered in the Chinese Clinical Trial Registry (ChiCTR2100052140) on 20/10/2021.


Subject(s)
Diterpenes , Eye , Humans , Anesthesia, General , Retinyl Esters , Gels
15.
Biomolecules ; 14(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38672422

ABSTRACT

Alcohol-associated liver disease (ALD) is a substantial cause of morbidity and mortality worldwide and represents a spectrum of liver injury beginning with hepatic steatosis (fatty liver) progressing to inflammation and culminating in cirrhosis. Multiple factors contribute to ALD progression and disease severity. Here, we overview several crucial mechanisms related to ALD end-stage outcome development, such as epigenetic changes, cell death, hemolysis, hepatic stellate cells activation, and hepatic fatty acid binding protein 4. Additionally, in this review, we also present two clinically relevant models using human precision-cut liver slices and hepatic organoids to examine ALD pathogenesis and progression.


Subject(s)
Disease Progression , Liver Diseases, Alcoholic , Humans , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Animals , Liver/metabolism , Liver/pathology , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Epigenesis, Genetic
16.
J Environ Manage ; 358: 120827, 2024 May.
Article in English | MEDLINE | ID: mdl-38608575

ABSTRACT

The environmental safety of nanoscale molybdenum disulfide (MoS2) has attracted considerable attention, but its influence on the horizontal migration of antibiotic resistance genes and the ecological risks entailed have not been reported. This study addressed the influence of exposure to MoS2 at different concentrations up to 100 mg/L on the conjugative transfer of antibiotic resistance genes carried by RP4 plasmids with two strains of Escherichia coli. As a result, MoS2 facilitated RP4 plasmid-mediated conjugative transfer in a dose-dependent manner. The conjugation of RP4 plasmids was enhanced as much as 7-fold. The promoting effect is mainly attributable to increased membrane permeability, oxidative stress induced by reactive oxygen species, changes in extracellular polymer secretion and differential expression of the genes involved in horizontal gene transfer. The data highlight the distinct dose dependence of the conjugative transfer of antibiotic resistance genes and the need to improve awareness of the ecological and health risks of nanoscale transition metal dichalcogenides.


Subject(s)
Disulfides , Drug Resistance, Microbial , Escherichia coli , Molybdenum , Plasmids , Molybdenum/chemistry , Plasmids/genetics , Disulfides/chemistry , Escherichia coli/genetics , Escherichia coli/drug effects , Drug Resistance, Microbial/genetics , Conjugation, Genetic , Anti-Bacterial Agents/pharmacology , Gene Transfer, Horizontal
17.
Mar Pollut Bull ; 202: 116308, 2024 May.
Article in English | MEDLINE | ID: mdl-38574503

ABSTRACT

The distribution of polycyclic aromatic hydrocarbons (PAHs) and halogenated PAHs (HPAHs) in surface soils from the petroleum industrial area of the Yellow River Delta (YRD) in China were investigated. The total concentrations of 16 PAHs ranged from 19.6 to 1560 ng/g, while 22 HPAHs ranged from 2.44 to 14.9 ng/g. Moreover, a high degree of spatial distribution heterogeneity was observed for both PAHs and HPAHs, which is likely attributed to the distinct industrial activities in studied area. The combustion of biomass and petroleum were identified as primary sources of soil PAHs and HPAHs in the YRD. Furthermore, benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[g,h,i]perylene exhibited high ecological risks (with risk quotients of 1.47, 1.44, and 1.02, respectively) in specific sites within the YRD. Considering the high toxicity of HPAHs and their potential joint environmental effects with PAHs, continuous attention should be directed towards the environmental risks associated with both PAHs and HPAHs.


Subject(s)
Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Rivers , Soil Pollutants , Soil , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , China , Soil Pollutants/analysis , Soil/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis , Hydrocarbons, Halogenated/analysis
18.
Brain Res ; 1839: 148910, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38604557

ABSTRACT

BACKGROUND: We have reported neuro-inflammation is involved in radicular pain by enhancing the efficiency of pain synaptic transmission in spinal level. Recently, peers' studies have confirmed that magnesium deficiency leads to neuro-inflammation, thus contributes to memory and emotional deficits and pain hypersensitivity in antineoplastic agents treated rats. In this study, we explore the effect of oral application of magnesium-L-threonate (L-TAMS) in radicular pain induced by lumbar disc herniation (LDH) of rats and the possible mechanisms. METHODS: Rat model of LDH was induced by autologous nucleus pulposus (NP) implantation. Mechanical and thermal pain thresholds were assessed by von Frey filaments and hotplate test respectively. L-TAMS was applied from drinking water at dosage of 604 mg/kg/day from 2 day before NP implantation and until the end of the experiment. Free Mg2+ content in serum and cerebrospinal fluid (CSF) was measured by calmagite chromometry. Synaptic transmission efficiency was determined by C-fiber evoked field potentials recorded by electrophysiologic recording in vivo. The activation of microglia in spinal dorsal horn was displayed by immunofluorescence staining and western blotting. The expressions of pro-inflammatory cytokines and glutamic N-methyl-D-aspartate receptor (NMDAR) subunits (NR2A, NR2B) were assessed by western blotting and enzyme-linked immunosorbent assay (ELISA) respectively. RESULTS: NP implantation induced mechanical allodynia and thermal hyperalgesia, accompanied by decreased Mg2+ concentration in serum and CSF which were both obscured by oral application of L-TAMS. L-TAMS inhibited spinal microglia activation and pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß) expression of rats with NP. L-TAMS decreased C-fiber evoked potentials and NR2B protein level in rats with NP, which were rescued by extra intrathecal delivery of TNF-α or IL-6 or IL-1ß. CONCLUSIONS: Oral application of L-TAMS alleviates radicular pain by inhibiting neuro-inflammation dependent central sensitization of rats.

19.
J Ethnopharmacol ; 329: 118061, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38614265

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fangji Huangqi Decoction (FHD) is frequently prescribed for the clinical treatment of wind-cold and wind-dampness pathogenic superficial deficiency syndrome. It also has a notable curative effect on rheumatoid arthritis (RA). AIM OF THE STUDY: The study aimed to explore the possible mechanism of FHD against RA and provided a theoretical basis for alternative therapies for RA. MATERIALS AND METHODS: We used UPLC-Q-TOF-MS to analysis the ingredients and absorbed blood components of FHD. At the same time, the collagen-induced arthritis (CIA) rat model was established to estimate the therapeutic effects on FHD by considering body weight, arthritis score, paw swelling, autonomous movement ability, and synovial microvessel counts. Subsequently, immunofluorescence, immunohistochemistry, and Western blot were employed to detect the anti-angiogenic capacity of FHD in vivo, as well as the levels of apoptosis and autophagy in the synovial tissue. In addition, flow cytometry and Western blot were used to assess the effects of FHD on apoptosis and autophagy in MH7A cells. The effects of FHD on the proliferation and migration of MH7A cells were measured by CCK8 assay, cell migration and, invasion experiments. Finally, a tube formation assay was performed to evaluate the angiogenic capacity of FHD in co-cultures of MH7A cells and HUVEC cells. RESULTS: Through testing of FHD's original formula, a total of 26 active ingredients have been identified, with 17 of them being absorbed into the bloodstream. FHD significantly improved the pathological symptoms and synovial hyperplasia of CIA rats. FHD could suppress the expression of HIF-1α, promote apoptosis in CIA rat synovial tissue, and suppress autophagy and angiogenesis. In vitro experiments showed that serum containing FHD inhibited the proliferation, migration, and invasion of MH7A cells, and also suppressed the expression of autophagy-related proteins while promoting apoptosis. FHD markedly repressed the expression of HIF-1α protein in TNF-α-stimulated MH7A cells and inhibited the tube formation capacity induced by MH7A cells in HUVEC cells. CONCLUSIONS: The study had proven that FHD played an excellent anti-RA role, which may be attributed to its potential mechanism of regulating the balance between autophagy and apoptosis in RA FLS by suppressing the HIF-1α, thus contributing to its anti-angiogenic activities.


Subject(s)
Apoptosis , Arthritis, Experimental , Arthritis, Rheumatoid , Autophagy , Drugs, Chinese Herbal , Hypoxia-Inducible Factor 1, alpha Subunit , Neovascularization, Pathologic , Animals , Apoptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Autophagy/drug effects , Arthritis, Rheumatoid/drug therapy , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Rats , Male , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neovascularization, Pathologic/drug therapy , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Antirheumatic Agents/pharmacology , Angiogenesis
20.
Vet Microbiol ; 293: 110070, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593624

ABSTRACT

Stress granules (SGs), the main component is GTPase-activating protein-binding protein 1 (G3BP1), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. In this study, we found that porcine deltacoronavirus (PDCoV) infection induced stable formation of robust SGs in cells through a PERK (protein kinase R-like endoplasmic reticulum kinase)-dependent mechanism. Overexpression of SGs marker proteins G3BP1 significantly reduced PDCoV replication in vitro, while inhibition of endogenous G3BP1 enhanced PDCoV replication. Moreover, PDCoV infected LLC-PK1 cells raise the phosphorylation level of G3BP1. By overexpression of the G3BP1 phosphorylated protein or the G3BP1 dephosphorylated protein, we found that phosphorylation of G3BP1 is involved in the regulation of PDCoV-induced inflammatory response. Taken together, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets for antiviral target.


Subject(s)
DNA Helicases , Inflammation , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Animals , Swine , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , Phosphorylation , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , Virus Replication , Coronavirus/immunology , Coronavirus/physiology , Cell Line , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/genetics , Immunity, Innate
SELECTION OF CITATIONS
SEARCH DETAIL
...