Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Environ Pollut ; 343: 123177, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38103714

ABSTRACT

Chlorinated polyvinyl chloride (CPVC)-based activated carbon spheres with smooth surfaces, good sphericity, interconnected hierarchical porous structure and high porosity have been synthesized by non-solvent induced phase separation method, followed by successive treatments of stabilization, carbonization at 450 °C in N2 atmosphere, and activation with CO2 as an agent at 900-1000 °C. The effect of activation temperatures on the textural properties of activated carbon spheres and their adsorption potential for volatile organic compounds (VOCs) under dynamic conditions is investigated. CO2 activation improves the hierarchy in the microporous range by stimulating the formation of supermicropores and significantly expands the specific surface area and pore volume of activated carbon spheres. The textural properties of adsorbents play a vital role in the adsorption performance of different VOCs. The adsorption capacity of VOC molecules can be greatly promoted by elevating specific surface area and pore volume. Due to the compatibility difference between the VOC molecules and the pore structure of adsorbents, the adsorption capacity follows the order of toluene > m-xylene > n-hexane. The adsorption isotherm of toluene on CPVC-AC1000 can be generally expressed by the Langmuir model. The adsorbents with larger average pore diameters possess a lower activation energy of desorption, which is beneficial for desorption. The carbon sphere activated at 1000 °C is a high-performance adsorbent with good reusability. Thus, the present study provides a synthesis process to produce the activated carbon spheres with high porosity from low-cost CPVC for its application in VOC adsorption.


Subject(s)
Charcoal , Volatile Organic Compounds , Charcoal/chemistry , Volatile Organic Compounds/chemistry , Carbon Dioxide , Adsorption , Porosity , Toluene
2.
Sci Total Environ ; 868: 161626, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36649769

ABSTRACT

The trace elements (TEs) have caused great harm to the environment due to the large consumption of coal, and their emission from the coal-fired power plant (CFPP) has become a hot issue. The deep peak load regulation (DPLR) become a trend in the CFPP, which will affect the migration and emission of TEs. To explore the effect of the DLPR on the migration and emission characteristics of typical TEs in a 330 MW CFPP, the TEs field tests were carried out during the regulation period. Results showed that a higher load enhanced the migration of Pb, Mn, and Cr from bottom ash to fly ash, while it had little effect on the other TEs. More importantly, >99 % of TEs (93 % of Se) could be captured by air pollution control devices (APCDs), and the emission risk of Se and Mn increased with the load. Compared with the other TEs, it is particularly noteworthy that Se has a higher gaseous proportion in the flue gas, and the emission factor sharply increased from 165 MW to 297 MW. In addition, part of the particulate selenium transformed into a gaseous state across the ESP. This work contributes to understanding the migration characteristic of TEs during the DPLR process of CFPP and provides guidance for TEs control in the CFPP.

3.
Waste Manag ; 149: 53-59, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35714436

ABSTRACT

Pyrolysis is a technical means for waste tires recycling, which can promote the enrichment of carbon black and facilitate the subsequent recovery. However, carbon black particles aggregated and the inorganic impurities tended to be enriched in pyrolytic char during the waste tire pyrolysis process, which is not conducive to the substitution of commercial carbon black by pyrolytic char. In the present study, a novel method using molten salts thermal treatment was proposed for the impurities removal from pyrolytic chars with different characteristics. In addition, the proper thermal treatment conditions were further estimated to obtain better performance for the physical-chemical properties improvement of pyrolytic char. Six kinds of char samples were chosen to conduct molten salts thermal treatment (MSTT) experiments at 350, 400, and 450 °C. The experimental results show that MSTT can effectively remove the impurities of different pyrolytic chars, and the most optimum reaction conditions are at 400 °C, 2 h of reaction time, and molten salt/char ratio of 10:1. In addition, after MSTT, the pyrolytic char was depolymerized, and the average particle size reduced from 36.63 µm to 19.08 µm, the specific surface area increased from 49 m2/g to 73 m2/g. At the same time, the graphite carbon content of the pyrolytic char increased from 24.41% to 70.90%, and the hydroxyl content on the pyrolytic char surface increased significantly. In summary, the physical-chemical properties of waste tire pyrolytic char were improved by MSTT, which is close to the carbon black N550 level.


Subject(s)
Pyrolysis , Soot , Carbon/chemistry , Recycling , Salts
4.
Carbohydr Res ; 511: 108463, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34741878

ABSTRACT

The mechanism of the initial reactions in the acid-catalytic conversion of d-xylose/d-xylulose to furfural was studied with density functional theory. The reactions included mutual transformations among d-xylose, d-xylulose and the intermediate of 1,2-enediol. The catalytic performances of several acids including H2SO4, HNO3, HCl, HBr and HI, and the solvent effects of water and THF (tetrahydrofuran) were studied. A simplified kinetic model of the d-xylose/d-xylulose-to-furfural conversion in water solvent was built, with the assumption that the conversion from 1,2-enediol to furfural was the rate-limiting step and could be treated as one-step reaction. The simulation can well fit the experimental regulation, which verifies the rationality of the model simplification. The dominant reaction pathways from d-xylose/d-xylulose to furfural were deduced based on the calculated energy barriers and corresponding reaction rate constants, with different acid catalysis and reaction mediums.


Subject(s)
Furaldehyde , Xylulose , Catalysis , Dehydration , Density Functional Theory , Humans , Xylose
5.
J Hazard Mater ; 402: 123826, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33254808

ABSTRACT

The disposal and utilization of antibiotic mycelial dreg (AMD), which has been identified as a hazardous waste in China, are a serious concern because of the residual antibiotic and huge annual output. Pyrolysis is a promising technology to treat AMD. However, the pyrolysis of AMD is not studied in an adequate degree, particularly no attention has been paid to the release and distribution of the phosphorus in AMD during pyrolysis. Therefore, the present work studied the pyrolysis of AMD more comprehensively. The influence of pyrolysis temperature on product yields and characteristics, together with the release and distribution of nitrogen and phosphorus, and the antibiotic residue in products, were investigated. The results suggested that residual antibiotic was eliminated after pyrolysis. Nitrogen was mainly contained in the biochar and liquid products, while phosphorus was mainly retained in the biochar. Liquid products were characterized by abundant oxygen and nitrogen-containing compounds, while biochar was featured of both abundant nitrogen and inorganic phosphate groups. Pyrolysis temperature showed a significant effect on product yields and characteristics, and a low pyrolysis temperature is recommended considering the recycling of nitrogen and phosphorus. The disposal of AMD through pyrolysis conforms to the principles of AMD disposal.


Subject(s)
Anti-Bacterial Agents , Pyrolysis , Charcoal , China
6.
J Hazard Mater ; 301: 400-6, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26410268

ABSTRACT

Fly ashes recovered from the particulate control devices at six pulverized coal boiler unites of China, are studied using an X-ray photoelectron spectroscopy (XPS) with a particular focus on the functionalities of fluorine (F), chlorine (Cl), carbon and oxygen on fly ash. It is found that the inorganic forms of F and Cl are predominant on the ash surface in comparison with their organics, and the proportion of organic Cl is relatively higher than that of organic F. Similar results are also obtained in the bulk by correlating the F and Cl contents with those of the unburnt carbon and other compositions in ash. Strong correlations of mercury retention with surface carbon-oxygen functional groups indicate that the C=O, OH/C-O and (O-C=O)-O on surface are of significant importance for mercury retention in fly ash. Their surface concentrations are related to coal type. The presence of Cl in fly ash helps with mercury retention. No obvious effect of F is observed.

7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(8): 2333-8, 2015 Aug.
Article in Chinese | MEDLINE | ID: mdl-26672320

ABSTRACT

Phosphogypsum, which contains more than 90% of the calcium sulfate dehydrate (CaSO4 · 2H2O), is a kind of important renewable gypsum resources. Unlike the natural gypsum, however, phosphorus, fluorine, organic matter and other harmful impurities in phosphogypsum limit its practical use. To ascertain the existence form, content and phase distribution of trace fluoride in phosphogypsum has important theoretical values in removing trace fluoride effectively. In this present paper, the main existence form and phase distribution of trace fluoride in phosphogypsum was investigated by the combination of X-ray photoelectron spectroscopy (XPS) and Electron microprobe analysis (EMPA). The results show that trace fluoride phase mainly includes NaF, KF, CaF2, K2SiF6, Na2SiF6, Na3AlF6, K3AlF6, AlF3 · 3H2O, AlF2.3(OH)0.7 · H2O, Ca5(PO4)3F, Ca10(PO4)6F2. Among them, 4.83% of fluorine exists in the form of fluoride (NaF, KF, CaF2); Accordingly, 8.43% in the form of fluoride phosphate (Ca5(PO4)3F, Ca10(PO4)6F2); 12.21% in the form of fluorine aluminate (Na3AlF6, K3AlF6); 41.52% in the form of fluorosilicate (K2SiF6, Na2SiF6); 33.02% in the form of aluminum fluoride with crystal water (AlF3 · 3H2O, AlF2.3(OH)0.7 · H2O). In the analysis of phase constitution for trace elements in solid samples, the method of combining XPS and EMPA has more advantages. This study also provides theoretical basis for the removal of trace fluorine impurity and the effective recovery of fluorine resources.

SELECTION OF CITATIONS
SEARCH DETAIL
...