Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.080
Filter
1.
Emerg Microbes Infect ; : 2361791, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828796

ABSTRACT

GRAPHICAL ABSTRACT: MODEL SUMMARY AND MOTIVATION: Individuals infected with SARS-CoV-2 experience a wide spectrum of clinical manifestations ranging from no symptoms to death. Using the Virus-Human Outcomes Prediction (ViHOP) algorithm, we aim to utilize the individual's clinical characteristics, the individual's location, and the infecting SARS-CoV-2 virus characteristics obtained by whole genome sequencing to determine their likelihood of admission to the hospital, admission to the intensive care unit (ICU), or experiencing long COVID. This model allows clinicians to identify at-risk patients for further monitoring and/or early treatment.

2.
Carcinogenesis ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829328

ABSTRACT

Cancer cells exhibit heterogenous metastatic potential, and high metastatic subclones can enhance metastatic potential of low metastatic subclones by transmitting some factors. Exosomal miRNAs play a pivotal role in the crosstalk of heterogenous metastatic subclones. This study discovered that miR-20a-3p was upregulated in colorectal adenocarcinoma (CRA), correlated with metastasis, and potentially served as a prognostic indicator for CRA. miR-20a-3p could promote the proliferation, migration and invasion of CRA cells. Interestingly, high metastatic CRA cells could promote malignant phenotypes of low metastatic CRA cells by transmitting exosomal miR-20a-3p. Mechanically, miR-20a-3p could inhibit NF1, thereby activate the RAS-mediated mitogen-activated protein kinases (MAPK) signaling pathway to drive the metastasis of CRA. In summary, our study provided the evidence that colorectal cancer cells with high metastatic potential drive metastasis by transmitting exosomal miR-20a-3p through modulating NF1/MAPK pathway.

3.
Int J Biol Macromol ; : 132779, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825268

ABSTRACT

The effects of high-resistant starch (RS) content rice flour, psyllium husk powder (PHP), and psyllium powder (PP) on the edible quality and starch digestibility of rice noodles were investigated in this study. High-RS rice noodles showed lower digestibility but poor edible quality. With the addition of PHP and PP, high-RS rice noodles' cooking and texture quality were improved significantly, especially the breakage rates, cooking losses, and chewiness (P < 0.05). Compared to traditional white rice noodle's estimated glycemic index (eGI) of 86.69, the eGI values for 5PHP-RN and 5PHP-2PP-RN were significantly decreased to 66.74 and 65.77, achieving a medium GI status (P < 0.05). This resulted from the high amylose and lipid content in the modified rice flour and psyllium, leading to increase of starch crystallinity. Besides, based on the analysis of Pearson's correlation, it can be found that PHP rich in insoluble dietary fiber (IDF) could improve high-RS noodle cooking and texture quality better, while PP rich in soluble dietary fiber (SDF) can further reduce the RDS content and its starch digestibility. Therefore, utilizing modified rice flour with an appropriate addition of PHP and PP can be considered an effective strategy for producing superior-quality lower glycemic index rice noodles.

4.
Mar Life Sci Technol ; 6(2): 212-235, 2024 May.
Article in English | MEDLINE | ID: mdl-38827127

ABSTRACT

Species of the ciliate genera Myxophyllum and Conchophthirus are found as endocommensals of terrestrial and freshwater mollusks, respectively. So far, there have been few studies of these genera and morphological data for most members are often incomplete. In the present work, two new species, Myxophyllum weishanense sp. nov. and Conchophthirus paracurtus sp. nov., and a known species, Conchophthirus lamellidens, were isolated from hosts in Lake Weishan Wetland, China. Taxonomic studies indicate that M. weishanense sp. nov. can be recognized mainly by the combination of about 60 somatic kineties on both ventral and dorsal sides and the presence of caudal cilia. Conchophthirus paracurtus sp. nov. differs from congeners in its body shape and size, having a glabrous area on the posterior right side, and having fewer somatic kineties. In addition, differences in their ITS2 (Internally Transcribed Spacer 2) secondary structures support the discrimination of the two new species from their highly similar congeners. An improved diagnosis for the poorly known species, C. lamellidens is also provided. Phylogenetic analyses reveal that members of the genus Myxophyllum belong to a fully supported clade that is sister to a large, poorly supported clade consisting of Hemispeiridae, Ancistridae, and several lineages of the nonmonophyletic Cyclidiidae. The Myxophyllum clade also includes Protophyra ovicola JQ956552, a possible misidentification. Sequences of the two new Conchophthirus species cluster with other congeners in a fully supported clade that is unrelated to either the 'typical' thigmotrichs or to pleuronematids, thus conflicting with the traditional classification, and may represent an orphan scuticociliate lineage. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00230-4.

5.
Molecules ; 29(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792224

ABSTRACT

Graft copolymers have unique application scenarios in the field of high-performance thermoplastic elastomers, resins and rubbers. ß-myrcene (My) is a biomass monomer derived from renewable plant resources, and its homopolymer has a low glass transition temperature and high elasticity. In this work, a series of tapered copolymers P(My-co-AMS)k (k = 1, 2, 3) were first synthesized in cyclohexane by one-pot anionic polymerization of My and α-methyl styrene (AMS) using sec-BuLi as the initiator. PAMS chain would fracture when heated at high temperature and could endow the copolymer with thermal degradation property. The effect of the incorporation of AMS unit on the thermal stability and glass transition temperature of polymyrcene main chain was studied. Subsequently, the double bonds in the linear copolymers were partially epoxidized and hydroxylated into hydroxyl groups to obtain hydroxylated copolymer, which was finally used to initiate the ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) to synthesize the graft copolymer with PCL as the side chain. All these copolymers before and after modifications were characterized by proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), thermogravimetry analysis (TGA), and differential scanning calorimeter (DSC).

6.
Pharmaceuticals (Basel) ; 17(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794215

ABSTRACT

The combination of anti-angiogenesis agents with immune-checkpoint inhibitors is a promising treatment for patients with advanced hepatocellular carcinoma (HCC); however, therapeutic resistance caused by cancer stem cells present in tumor microenvironments remains to be overcome. In this study, we report for the first time that the Kringle 1 domain of human hepatocyte growth-factor α chain (HGFK1), a previously described anti-angiogenesis peptide, repressed the sub-population of CD90+ cancer stem cells (CSCs) and promoted their differentiation and chemotherapy sensitivity mainly through downregulation of pre-Met protein expression and inhibition of Wnt/ß-catenin and Notch pathways. Furthermore, we showed that the i.p. injection of PH1 (a tumor-targeted and biodegradable co-polymer), medicated plasmids encoding Endostatin (pEndo), HGFK1 genes (pEndo), and a combination of 50% pEndo + 50% pHGFK1 all significantly suppressed tumor growth and prolonged the survival of the HCC-bearing mice. Importantly, the combined treatment produced a potent synergistic effect, with 25% of the mice showing the complete clearance of the tumor via a reduction in the microvessel density (MVD) and the number of CD90+ CSCs in the tumor tissues. These results suggest for the first time that HGFK1 inhibits the CSCs of HCC. Furthermore, the combination of two broad-spectrum anti-angiogenic factors, Endo and HGFK1, is the optimal strategy for the development of effective anti-HCC drugs.

7.
Nanotechnology ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776879

ABSTRACT

Aqueous electrolytes are promising in large-scale energy storage applications due to intrinsic low toxicity, non-flammability, high ion conductivity, and low cost. However, pure water's narrow electrochemical stability window (ESW) limits the energy density of aqueous rechargeable batteries. Water-in-salt electrolytes (WiSE) proposal has expanded the ESW to over 3 V by changing electrolyte solvation structure. The limited solubility and WIS electrolyte crystallization have been persistent concerns for imide-based lithium salts. Asymmetric lithium salts compensate for the above flaws. However, studying the solvation structure of asymmetric salt aqueous electrolytes is rare. Here, we applied small-angle X-ray scattering (SAXS) and Raman spectroscope to reveal the solvation structure of imide-based asymmetric lithium salts. The SAXS spectra show the blue shifts of the lower q peak with decreased intensity as the increasing of concentration, indicating a decrease in the average distance between solvated anions. Significantly, an exponential decrease in the d-spacing as a function of concentration was observed. In addition, we also applied the Raman spectroscopy technique to study the evolutions of solvent-separated ion pairs (SSIPs), contacted ion pairs (CIPs), and aggregate ions (AGGs) in the solvation structure of asymmetric salt solutions. .

8.
BMC Public Health ; 24(1): 1378, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778312

ABSTRACT

BACKGROUND: Understanding the intricate influences of risk factors contributing to suicide among young individuals remains a challenge. The current study employed interpretable machine learning and network analysis to unravel critical suicide-associated factors in Chinese university students. METHODS: A total of 68,071 students were recruited between Sep 2016 and Sep 2020 in China. Students reported their lifetime experiences with suicidal thoughts and behaviors, categorized as suicide ideation (SI), suicide plan (SP), and suicide attempt (SA). We assessed 36 suicide-associated factors including psychopathology, family environment, life events, and stigma. Local interpretations were provided using Shapley additive explanation (SHAP) interaction values, while a mixed graphical model facilitated a global understanding of their interplay. RESULTS: Local explanations based on SHAP interaction values suggested that psychoticism and depression severity emerged as pivotal factors for SI, while paranoid ideation strongly correlated with SP and SA. In addition, childhood neglect significantly predicted SA. Regarding the mixed graphical model, a hierarchical structure emerged, suggesting that family factors preceded proximal psychopathological factors, with abuse and neglect retaining unique effects. Centrality indices derived from the network highlighted the importance of subjective socioeconomic status and education in connecting various risk factors. CONCLUSIONS: The proximity of psychopathological factors to suicidality underscores their significance. The global structures of the network suggested that co-occurring factors influence suicidal behavior in a hierarchical manner. Therefore, prospective prevention strategies should take into account the hierarchical structure and unique trajectories of factors.


Subject(s)
Students , Suicidal Ideation , Humans , Male , Risk Factors , Female , Cross-Sectional Studies , Young Adult , China/epidemiology , Students/psychology , Students/statistics & numerical data , Suicide, Attempted/statistics & numerical data , Suicide, Attempted/psychology , Adolescent , Universities , Adult , Suicide/psychology , Suicide/statistics & numerical data , Machine Learning
9.
JMIR Res Protoc ; 13: e57001, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788208

ABSTRACT

BACKGROUND: Spondyloarthritis (SpA), a chronic inflammatory disorder, predominantly impacts the sacroiliac joints and spine, significantly escalating the risk of disability. SpA's complexity, as evidenced by its diverse clinical presentations and symptoms that often mimic other diseases, presents substantial challenges in its accurate diagnosis and differentiation. This complexity becomes even more pronounced in nonspecialist health care environments due to limited resources, resulting in delayed referrals, increased misdiagnosis rates, and exacerbated disability outcomes for patients with SpA. The emergence of large language models (LLMs) in medical diagnostics introduces a revolutionary potential to overcome these diagnostic hurdles. Despite recent advancements in artificial intelligence and LLMs demonstrating effectiveness in diagnosing and treating various diseases, their application in SpA remains underdeveloped. Currently, there is a notable absence of SpA-specific LLMs and an established benchmark for assessing the performance of such models in this particular field. OBJECTIVE: Our objective is to develop a foundational medical model, creating a comprehensive evaluation benchmark tailored to the essential medical knowledge of SpA and its unique diagnostic and treatment protocols. The model, post-pretraining, will be subject to further enhancement through supervised fine-tuning. It is projected to significantly aid physicians in SpA diagnosis and treatment, especially in settings with limited access to specialized care. Furthermore, this initiative is poised to promote early and accurate SpA detection at the primary care level, thereby diminishing the risks associated with delayed or incorrect diagnoses. METHODS: A rigorous benchmark, comprising 222 meticulously formulated multiple-choice questions on SpA, will be established and developed. These questions will be extensively revised to ensure their suitability for accurately evaluating LLMs' performance in real-world diagnostic and therapeutic scenarios. Our methodology involves selecting and refining top foundational models using public data sets. The best-performing model in our benchmark will undergo further training. Subsequently, more than 80,000 real-world inpatient and outpatient cases from hospitals will enhance LLM training, incorporating techniques such as supervised fine-tuning and low-rank adaptation. We will rigorously assess the models' generated responses for accuracy and evaluate their reasoning processes using the metrics of fluency, relevance, completeness, and medical proficiency. RESULTS: Development of the model is progressing, with significant enhancements anticipated by early 2024. The benchmark, along with the results of evaluations, is expected to be released in the second quarter of 2024. CONCLUSIONS: Our trained model aims to capitalize on the capabilities of LLMs in analyzing complex clinical data, thereby enabling precise detection, diagnosis, and treatment of SpA. This innovation is anticipated to play a vital role in diminishing the disabilities arising from delayed or incorrect SpA diagnoses. By promoting this model across diverse health care settings, we anticipate a significant improvement in SpA management, culminating in enhanced patient outcomes and a reduced overall burden of the disease. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/57001.


Subject(s)
Spondylarthritis , Humans , Spondylarthritis/diagnosis , Spondylarthritis/therapy
10.
Nanotechnology ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788702

ABSTRACT

As a promising alternative to Ir based acidic oxygen evolution reaction (OER) catalysts, Ru suffers from severe fading issues. Supporting it on robust oxides such as TiO2 is a simple and effective way to enhance its lifetime. Here, we find that a simple reduction-oxidation process can further improve both activity and stability of RuO2-TiO2 composites at high potentials. In this process, the degree of oxidation was carefully controlled to form Ru/RuO2 heterostructure to improve OER activity. Moreover, due to the oxophilicity difference of Ru and Ti, the structure of catalysts was changed from supported to embedded, which enhanced the protective effect of TiO2 and mitigated the dissolution of Ru element in acidic electrolyte, making as-prepared Ru/RuO2-TiO2 with better durability at all tested potentials.

11.
Oncogene ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698265

ABSTRACT

Regulatory T cells (Tregs) prevent autoimmunity and contribute to cancer progression. They exert contact-dependent inhibition of immune cells through the production of active transforming growth factor-ß1 (TGF-ß1). However, the absence of a specific surface marker makes inhibiting the production of active TGF-ß1 to specifically deplete human Tregs but not other cell types a challenge. TGF-ß1 in an inactive form binds to Tregs membrane protein Glycoprotein A Repetitions Predominant (GARP) and then activates it via an unknown mechanism. Here, we demonstrated that tumour necrosis factor receptor-associated factor 3 interacting protein 3 (TRAF3IP3) in the Treg lysosome is involved in this activation mechanism. Using a novel naphthalenelactam-platinum-based anticancer drug (NPt), we developed a new synergistic effect by suppressing ATP-binding cassette subfamily B member 9 (ABCB9) and TRAF3IP3-mediated divergent lysosomal metabolic programs in tumors and human Tregs to block the production of active GARP/TGF-ß1 for remodeling the tumor microenvironment. Mechanistically, NPt is stored in Treg lysosome to inhibit TRAF3IP3-meditated GARP/TGF-ß1 complex activation to specifically deplete Tregs. In addition, by promoting the expression of ABCB9 in lysosome membrane, NPt inhibits SARA/p-SMAD2/3 through CHRD-induced TGF-ß1 signaling pathway. In addition to expose a previously undefined divergent lysosomal metabolic program-meditated GARP/TGF-ß1 complex blockade by exploring the inherent metabolic plasticity, NPt may serve as a therapeutic tool to boost unrecognized Treg-based immune responses to infection or cancer via a mechanism distinct from traditional platinum drugs and currently available immune-modulatory antibodies.

12.
Lancet Reg Health West Pac ; 45: 100610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38699292

ABSTRACT

China's rapid socioeconomic development since 1990 makes it a fitting location to summarise research about how biological changes associated with socioenvironmental changes affect population mental health and, thus, lay the groundwork for subsequent, more focused studies. An initial search identified 308 review articles in the international literature about biomarkers associated with 12 common mental health disorders. We then searched for studies conducted in China that assessed the association of the identified mental health related-biomarkers with socioenvironmental factors in English-language and Chinese-language databases. We located 1330 articles published between 1 January 1990 and 1 August 2021 that reported a total of 3567 associations between 56 specific biomarkers and 11 socioenvironmental factors: 3156 (88·5%) about six types of environmental pollution, 381 (10·7%) about four health-related behaviours (diet, physical inactivity, internet misuse, and other lifestyle factors), and 30 (0·8%) about socioeconomic inequity. Only 245 (18·4%) of the papers simultaneously considered the possible effect of the biomarkers on mental health conditions; moreover, most of these studies assessed biomarkers in animal models of mental disorders, not human subjects. Among the 245 papers, mental health conditions were linked with biomarkers of environmental pollution in 188 (76·7%), with biomarkers of health-related behaviours in 48 (19·6%), and with biomarkers of socioeconomic inequality in 9 (3·7%). The 604 biomarker-mental health condition associations reported (107 in human subjects and 497 in animal models) included 379 (62·7%) about cognitive functioning, 117 (19·4%) about anxiety, 56 (9·3%) about depression, 21 (3·5%) about neurodevelopmental conditions, and 31 (5·1%) about neurobehavioural symptoms. Improved understanding of the biological mechanisms linking socioenvironmental changes to community mental health will require expanding the range of socioenvironmental factors considered, including mental health outcomes in more of the studies about the association of biomarkers with socioenvironmental factors, and increasing the proportion of studies that assess mental health outcomes in humans.

13.
Front Endocrinol (Lausanne) ; 15: 1336787, 2024.
Article in English | MEDLINE | ID: mdl-38699389

ABSTRACT

Objectives: To investigate the association between contrast-enhanced ultrasound (CEUS) features of PTC and central lymph node metastasis (CLNM) and to develop a predictive model for the preoperative identification of CLNM. Methods: This retrospective study evaluated 750 consecutive patients with PTC from August 2020 to April 2023. Conventional ultrasound and qualitative CEUS features were analyzed for the PTC with or without CLNM using univariate and multivariate logistic regression analysis. A nomogram integrating the predictors was constructed to identify CLNM in PTC. The predictive nomogram was validated using a validation cohort. Results: A total of 684 patients were enrolled. The 495 patients in training cohort were divided into two groups according to whether they had CLNM (pCLNM, n= 191) or not (nCLNM, n= 304). There were significant differences in terms of tumor size, shape, echogenic foci, enhancement direction, peak intensity, and score based on CEUS TI-RADS between the two groups. Independent predictive US features included irregular shape, larger tumor size (≥ 1.0cm), and score. Nomogram integrating these predictive features showed good discrimination and calibration in both training and validation cohort with an AUC of 0.72 (95% CI: 0.68, 0.77) and 0.79 (95% CI: 0.72, 0.85), respectively. In the subgroup with larger tumor size, age ≤ 35 years, irregular shape, and score > 6 were independent risk factors for CLNM. Conclusion: The score based on preoperative CEUS features of PTC may help to identify CLNM. The nomogram developed in this study provides a convenient and effective tool for clinicians to determine an optimal treatment regimen for patients with PTC.


Subject(s)
Contrast Media , Lymphatic Metastasis , Nomograms , Thyroid Cancer, Papillary , Thyroid Neoplasms , Ultrasonography , Humans , Female , Male , Ultrasonography/methods , Retrospective Studies , Middle Aged , Lymphatic Metastasis/diagnostic imaging , Adult , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/pathology , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Aged
14.
Phys Rev Lett ; 132(16): 160801, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701444

ABSTRACT

A solid-state approach for quantum networks is advantageous, as it allows the integration of nanophotonics to enhance the photon emission and the utilization of weakly coupled nuclear spins for long-lived storage. Silicon carbide, specifically point defects within it, shows great promise in this regard due to the easy of availability and well-established nanofabrication techniques. Despite of remarkable progresses made, achieving spin-photon entanglement remains a crucial aspect to be realized. In this Letter, we experimentally generate entanglement between a silicon vacancy defect in silicon carbide and a scattered single photon in the zero-phonon line. The spin state is measured by detecting photons scattered in the phonon sideband. The photonic qubit is encoded in the time-bin degree of freedom and measured using an unbalanced Mach-Zehnder interferometer. Photonic correlations not only reveal the quality of the entanglement but also verify the deterministic nature of the entanglement creation process. By harnessing two pairs of such spin-photon entanglement, it becomes straightforward to entangle remote quantum nodes at long distance.

15.
Int J Cardiol Heart Vasc ; 52: 101414, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38694269

ABSTRACT

Ferroptosis is a newly discovered form of programmed cell death triggered by intracellular iron overload, which leads to the accumulation of lipid peroxides in various cells. It has been implicated in the pathogenesis and progression of various diseases, including tumors, neurological disorders, and cardiovascular diseases. The intricate mechanism underlying ferroptosis involves an imbalance between the oxidation and antioxidant systems, disturbances in iron metabolism, membrane lipid peroxidation, and dysregulation of amino acid metabolism. We highlight the key molecular mechanisms governing iron overload and ferroptosis, and discuss potential molecular pathways linking ferroptosis with arrhythmias.

16.
Int J Biol Sci ; 20(7): 2422-2439, 2024.
Article in English | MEDLINE | ID: mdl-38725842

ABSTRACT

Background & Aims: Reactive oxygen species (ROS) act as modulators triggering cellular dysfunctions and organ damage including liver fibrosis in which hepatic stellate cell (HSC) activation plays a key role. Previous studies suggest that microRNA-144 (miR-144) acts as a pro-oxidant molecule; however, whether and how miR-144 affects HSC activation and liver fibrosis remain unknown. Methods: Carbon tetrachloride (CCl4) and bile duct ligation (BDL)-induced experimental liver fibrosis models were used. Hepatic miR-144 expression was analyzed by miRNA in situ hybridization with RNAscope probe. The in vivo effects of silencing or overexpressing miR-144 were examined with an adeno-associated virus 6 (AAV6) carrying miR-144 inhibitor or mimics in fibrotic mouse experimental models. Results: In this study, we demonstrated that ROS treatment significantly upregulated miR-144 in HSCs, which further promoted HSC activation in vitro. Interestingly, miR-144 was preferentially elevated in HSCs of experimental liver fibrosis in mice and in human liver fibrotic tissues. Furthermore, in vivo loss or gain-of-function experiments via AAV6 carrying miR-144 antagomir or agomir revealed that blockade of miR-144 in HSCs mitigated, while overexpression of miR-144 in HSCs accelerated the development of experimental liver fibrosis. Mechanistically, SIN3 transcription regulator family member A (SIN3A), a transcriptional repressor, was identified to be the target of miR-144 in HSCs. MiR-144 downregulated Sin3A, and in line with this result, specific knockdown of Sin3a in HSCs remarkedly activated p38 MAPK signaling pathway to promote HSC activation, eventually exacerbating liver fibrosis. Conclusions: Oxidative stress-driven miR-144 fuels HSC activation and liver fibrogenesis by limiting the SIN3A-p38 axis. Thus, a specific inhibition of miR-144 in HSCs could be a novel therapeutic strategy for the treatment of liver fibrosis.


Subject(s)
Hepatic Stellate Cells , Liver Cirrhosis , MicroRNAs , Oxidative Stress , Reactive Oxygen Species , Sin3 Histone Deacetylase and Corepressor Complex , p38 Mitogen-Activated Protein Kinases , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Mice , Humans , p38 Mitogen-Activated Protein Kinases/metabolism , Sin3 Histone Deacetylase and Corepressor Complex/metabolism , Reactive Oxygen Species/metabolism , Male , Mice, Inbred C57BL , Repressor Proteins/metabolism , Repressor Proteins/genetics , Carbon Tetrachloride
17.
Food Res Int ; 186: 114355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729701

ABSTRACT

In this study, five C18 fatty acids (FA) with different numbers of double bonds and configurations including stearic acid (SA), oleic acid (OA), elaidic acid (EA), linoleic acid (LA), and α-linolenic acid (ALA), were selected to prepare highland barely starch (HBS)-FA complexes to modulate digestibility and elaborate the underlying mechanism. The results showed that HBS-SA had the highest complex index (34.18 %), relative crystallinity (17.62 %) and single helix content (25.78 %). Furthermore, the HBS-C18 FA complexes were formed by EA (C18 FA with monounsaturated bonds) that had the highest R1047/1022 (1.0509) and lowest full width at half-maximum (FWHM, 20.85), suggesting good short-range ordered structure. Moreover, all C18 FAs could form two kinds of V-type complexes with HBS, which can be confirmed by the results of CLSM and DSC measurements, and all of them showed significantly lower digestibility. HBS-EA possessed the highest resistant starch content (20.17 %), while HBS-SA had the highest slowly digestible starch content (26.61 %). In addition, the inhibition of HBS retrogradation by fatty acid addition was further proven, where HBS-SA gel firmness (37.80 g) and aging enthalpy value were the lowest, indicating the most effective. Overall, compounding with fatty acids, especially SA, could be used as a novel way to make functional foods based on HBS.


Subject(s)
Digestion , Fatty Acids , Hordeum , Oleic Acid , Starch , Starch/chemistry , Fatty Acids/analysis , Fatty Acids/chemistry , Hordeum/chemistry , Oleic Acid/chemistry , Stearic Acids/chemistry , Linoleic Acid/chemistry , alpha-Linolenic Acid/chemistry , Oleic Acids
18.
Front Neurol ; 15: 1353305, 2024.
Article in English | MEDLINE | ID: mdl-38721122

ABSTRACT

Alpha rhythm slowing is an important electroencephalogram(EEG) feature associated with (AD). This study aims to understand the correlation between alpha band deceleration and molecular changes from the perspective of neural computing. Considering the effect of Aß amyloid deposition on the inhibitory changes in the thalamic, a thalamic cortical model coupled with Aß amyloid is established. The results show that Aß amyloid deposition may induce neurotoxicity in thalamic reticular nucleus neurons, which results in inhibitory changes in the thalamus and slows the alpha rhythm of EEG output from the thalamus. In order to understand the pathogenesis more intuitively, some numerical simulations are provided to illustrate the obtained theories. This research is helpful to understand the pathogenesis of AD, so as to provide theoretical basis for the intervention and control of the disease.

19.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732009

ABSTRACT

The interaction between light and phytohormones is crucial for plant growth and development. The practice of supplementing light at night during winter to promote pitaya flowering and thereby enhance yield has been shown to be crucial and widely used. However, it remains unclear how supplemental winter light regulates phytohormone levels to promote flowering in pitaya. In this study, through analyzing the transcriptome data of pitaya at four different stages (NL, L0, L1, L2), we observed that differentially expressed genes (DEGs) were mainly enriched in the phytohormone biosynthesis pathway. We further analyzed the data and found that cytokinin (CK) content first increased at the L0 stage and then decreased at the L1 and L2 stages after supplemental light treatment compared to the control (NL). Gibberellin (GA), auxin (IAA), salicylic acid (SA), and jasmonic acid (JA) content increased during the formation of flower buds (L1, L2 stages). In addition, the levels of GA, ethylene (ETH), IAA, and abscisic acid (ABA) increased in flower buds after one week of development (L2f). Our results suggest that winter nighttime supplemental light can interact with endogenous hormone signaling in pitaya, particularly CK, to regulate flower bud formation. These results contribute to a better understanding of the mechanism of phytohormone interactions during the induction of flowering in pitaya under supplemental light in winter.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Light , Plant Growth Regulators , Seasons , Plant Growth Regulators/metabolism , Flowers/metabolism , Flowers/growth & development , Indoleacetic Acids/metabolism , Cytokinins/metabolism , Gibberellins/metabolism , Ipomoea nil/metabolism , Ipomoea nil/genetics , Transcriptome , Gene Expression Profiling , Cyclopentanes , Oxylipins
20.
Toxicol Lett ; 397: 129-140, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38759938

ABSTRACT

Zinc Oxide nanoparticles (ZnO NPs) have dualistic properties due to their advantage and toxicity. However, the impact and mechanisms of ZnO NPs on the prefrontal lobe have limited research. This study investigates the behavioral changes following exposure to ZnO NPs (34 mg/kg, 30 days), integrating multiple behaviors and bioinformatics analysis to identify critical factors and regulatory mechanisms. The essential differentially expressed genes (DEGs) were identified, including ORC1, DSP, AADAT, SLITRK6, and STEAP1. Analysis of the DEGs based on fold change reveals that ZnO NPs primarily regulate cell survival, proliferation, and apoptosis in neural cells, damaging the prefrontal lobe. Moreover, disruption of cell communication, mineral absorption, and immune pathways occurs. Gene set enrichment analysis (GSEA) further shows enrichment of behavior, neuromuscular process, signal transduction in function, synapses-related, cAMP signaling, and immune pathways. Furthermore, alternative splicing (AS) genes highlight synaptic structure/function, synaptic signal transduction, immune responses, cell proliferation, and communication.

SELECTION OF CITATIONS
SEARCH DETAIL
...