Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 937: 173556, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38806126

ABSTRACT

The patterns of organic carbon sequestration in lakes, along with their temporal dynamics, have profound implications for assessing the strength of terrestrial carbon sinks and the global carbon budget. The complexity of fluctuations in organic carbon burial in freshwater lake basins, along with the intricate interactions among various controlling factors over time, remains challenging to comprehend. By utilizing data on the organic carbon burial of sedimentary cores from twelve plateau lakes in a gradient of urbanization, this study employed a rigorous methodology to quantify the factors and origins that contribute to lacustrine carbon sequestration. The findings indicate that the rate of Total Organic Carbon (TOC) accumulation in lakes in highly urbanized areas has significantly surpassed that in areas with minimal urbanization since 1985. This trend of divergence has persisted for more than four decades. During the period from 1958 to 2008, soil nutrient characteristics (29.576 %) and human impact (16.684 %) were the major factors regulating the organic carbon burial in plateau lakes. Human pressures indirectly impact carbon sequestration through earth-surface processes in the lake basin, causing carbon burial to lag behind environmental indicators (e.g., δ13C and C/N) by approximately 5 years. Meanwhile, the carbon sequestration efficiency of plateau lakes shows a positive feedback to climatic warming with intensified urbanization, primarily regulated through the impacts on lake basin environments. The results will further enhance our understanding of the response of the lake ecosystem carbon cycle to anthropogenic influences.

2.
Sci Rep ; 14(1): 5456, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443413

ABSTRACT

Urban green space is a direct way to improve the carbon sink capacity of urban ecosystems. The carbon storage assessment of megacity green spaces is of great significance to the service function of urban ecosystems and the management of urban carbon zoning in the future. Based on multi-period remote sensing image data, this paper used the CASA model and the InVEST model to analyze the spatio-temporal variation and driving mechanism of carbon storage in Shenzhen green space and discussed the applicability of the two models to the estimation of carbon storage in urban green space. The research results showed that, from 2008 to 2022, in addition to the rapid expansion of construction land, the area of green space and other land types in Shenzhen showed a significant decrease trend. The estimation results of the carbon storage model showed that the carbon storage of green space shows a significant trend of reduction from 2008 to 2022, and the reduction amounts are 0.8 × 106 t (CASA model) and 0.64 × 106 t (InVEST model), respectively. The evaluation results of the model show that, in megacities, the spatial applicability of InVEST model is lower than that of CASA model, and the CASA model is more accurate in estimating the carbon storage of urban green space. The research results can provide a scientific basis for the assessment of the carbon sink capacity of megacity ecosystems with the goal of "dual carbon".

SELECTION OF CITATIONS
SEARCH DETAIL
...