Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(12): 20503-20514, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859431

ABSTRACT

It is widely believed that the discrete breather (DB) can only be created when the nonlinearity is strong in nonlinear systems. However, we here establish that this belief is incorrect. In this work, we systemically investigate the generation of DBs induced by coupling of the defects and nonlinearity for Bose-Einstein condensates in dissipative optical lattices. The results show that, only in a clean lattice is strong nonlinearity a necessary condition for generating of DB; whereas, if the lattice has a defect, the DBs can also be discovered even in weak nonlinearity, and its generation turns out to be controllable. In addition, we further reveal a critical interval of the defect in weak nonlinearity, within which DBs can be found, while outside DBs do not exist. Furthermore, we also explore the impact of multiple defects on the generation of DBs, and analyze the underlying physical mechanisms of these interesting phenomena. The results not only have the potential to be used for more precise engineering in the DB experiments, but also suggest that the DB may be ubiquitous since the defects and dissipation are unavoidable in real physics.

2.
J Shoulder Elbow Surg ; 33(5): 1138-1149, 2024 May.
Article in English | MEDLINE | ID: mdl-37944743

ABSTRACT

BACKGROUND: Distal humerus fractures are a challenge to treat, and the current standard of care, open reduction internal fixation with a double-plate, has a high rate of complications. We proposed a novel internal fixation configuration, lateral intramedullary nail and medial plate (LINMP) and verified its rigidity through biomechanical tests and finite element analysis. METHODS: The study involved biomechanical testing of 30 synthetic humerus models to compare 2 different fixation systems for an AO 13C-2.3 type fracture. The orthogonal double-plate (ODP) group and the LINMP group were compared through biomechanical testing to measure stiffness and failure load fewer than 3 working conditions. Based on the results, we optimized the intramedullary nail by eliminating the holes at the distal end of the nail and incorporating a 2-hole external locking plate. The Finite element analysis was also conducted to further compare the modified LINMP configuration with the previous 2 fixation configurations. RESULTS: In biomechanical tests, the ODP group exhibited lower stiffness under bending and compression forces compared to the LINMP group, but higher stiffness and failure loads under torsion force. In finite element analysis, the modified LINMP reduces the maximum stress of the fixation structure without significantly reducing the stiffness under bending stress and axial compression conditions. In torsion stress conditions, the modified LINMP enhances both the maximum stress and the stiffness, although it remains marginally inferior to the ODP structure. CONCLUSION: Our study demonstrates that the innovative LINMP presents comparable or slightly superior concerning bending and axial loading compared to orthogonal double-plate osteosynthesis for distal humeral intra-articular fractures, which might become a minimally invasive option for these fractures.


Subject(s)
Humeral Fractures, Distal , Humeral Fractures , Humans , Humeral Fractures/surgery , Finite Element Analysis , Biomechanical Phenomena , Humerus/surgery , Fracture Fixation, Internal/methods , Bone Plates , Minimally Invasive Surgical Procedures
3.
Int J Nanomedicine ; 18: 5925-5942, 2023.
Article in English | MEDLINE | ID: mdl-37881608

ABSTRACT

Introduction: Bone defects in diabetes mellitus (DM) remain a major challenge for clinical treatment. Fluctuating glucose levels in DM patients lead to excessive production of reactive oxygen species (ROS), which disrupt bone repair homeostasis. Bone filler materials have been widely used in the clinical treatment of DM-related bone defects, but overall they lack efficacy in improving the bone microenvironment and inducing osteogenesis. We utilized a gelatine methacrylate (GelMA) hydrogel with excellent biological properties in combination with molybdenum (Mo)-based polyoxometalate nanoclusters (POM) to scavenge ROS and promote osteoblast proliferation and osteogenic differentiation through the slow-release effect of POM, providing a feasible strategy for the application of biologically useful bone fillers in bone regeneration. Methods: We synthesized an injectable hydrogel by gelatine methacrylate (GelMA) and POM. The antioxidant capacity and biological properties of the synthesized GelMA/POM hydrogel were tested. Results: In vitro, studies showed that hydrogels can inhibit excessive reactive oxygen species (ROS) and reduce oxidative stress in cells through the beneficial effects of pH-sensitive POM. Osteogenic differentiation assays showed that GelMA/POM had good osteogenic properties with upregulated expression of osteogenic genes (BMP2, RUNX2, Osterix, ALP). Furthermore, RNA-sequencing revealed that activation of the PI3K/Akt signalling pathway in MC3T3-E1 cells with GelMA/POM may be a potential mechanism to promote osteogenesis. In an in vivo study, radiological and histological analyses showed enhanced bone regeneration in diabetic mice, after the application of GelMA/POM. Conclusion: In summary, GelMA/POM hydrogels can enhance bone regeneration by directly scavenging ROS and activating the PI3K/Akt signalling pathway.


Subject(s)
Diabetes Mellitus, Experimental , Osteogenesis , Humans , Mice , Animals , Hydrogels/pharmacology , Reactive Oxygen Species/metabolism , Molybdenum/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Gelatin/pharmacology , Methacrylates/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Diabetes Mellitus, Experimental/drug therapy , Bone Regeneration
4.
RSC Adv ; 11(55): 34836-34841, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-35494775

ABSTRACT

The curing kinetics between PGN and N100 were studied by Fourier transform infrared spectroscopy and dynamic torsional vibration method. The results showed that the entire curing process of adhesives was divided into three stages. Infrared spectroscopy can only monitor the first and second stages, while dynamic torsional vibration method monitors the second and third stages. Combining the two analysis methods allows the complete monitoring of the entire curing process in this system. Besides, differential scanning calorimeter is not suitable for studying this process.

SELECTION OF CITATIONS
SEARCH DETAIL
...