Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869071

ABSTRACT

Homologous recombination (HR) is a key process for repairing DNA double strand breaks and for promoting genetic diversity. However, HR occurs unevenly across the genome, and certain genomic features can influence its activity. One such feature is the presence of guanine quadruplexes (G4s), stable secondary structures widely distributed throughout the genome. These G4s play essential roles in gene transcription and genome stability regulation. Especially, elevated G4 levels in cells deficient in the Bloom syndrome helicase (BLM) significantly enhance HR at G4 sites, potentially threatening genome stability. Here, we investigated the role of G4-binding protein Yin Yang-1 (YY1) in modulating HR at G4 sites in human cells. Our results show that YY1's binding to G4 structures suppresses sister chromatid exchange after BLM knockdown, and YY1's chromatin occupancy negatively correlates with the overall HR rate observed across the genome. By limiting RAD51 homolog 1 (RAD51) access, YY1 preferentially binds to essential genomic regions, shielding them from excessive HR. Our findings unveil a novel role of YY1-G4 interaction, revealing novel insights into cellular mechanisms involved in HR regulation.

3.
J Agric Food Chem ; 71(44): 16521-16532, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37877155

ABSTRACT

Hydrogels with porous networks have received considerable attention in smart pesticide delivery due to their inherent versatility. In this study, acaricide cyetpyrafen (CPF)-loaded borax (BO) cross-linked hydroxypropyl guar gum (HPG) (CPF@BO-co-HPG, CBG) hydrogels were prepared by cross-linking and pesticide loading simultaneously. The flowable CBG hydrogels with 3D porous network structures had better wetting and spreading ability on Citrus reticulata Blanco leaves and a hydrophobic interface. The nonflowable CBG hydrogels had pH- and temperature-responsive release properties. Meanwhile, the acaricidal efficacy of CBG against Panonychus citri (McGregor) at both 24 and 48 h was significantly higher than those of CPF-loaded BO-free HPG hydrogels. Furthermore, CBG had a nutritional function for cotton growth and environmental safety for zebrafish. This research developed a BO cross-linked HPG hydrogel as a smart pesticide delivery vehicle and crop nutrient replenishment, which can be widely applied in sustainable agriculture.


Subject(s)
Acaricides , Hydrogels , Animals , Hydrogels/chemistry , Zebrafish , Hydrogen-Ion Concentration
4.
Int J Biol Macromol ; 208: 720-730, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35364202

ABSTRACT

Phytophthora capsici is a destructive plant pathogen that infects a wide range of hosts worldwide. The P. capsici cell wall, rich in cellulose, is vital for hyphal growth and host interactions. However, the enzymes involved in its synthesis remain largely unelucidated. In the current study, we functionally characterized the cellulose synthase gene PcCesA1, which is highly conserved in Phytophthora. By using CRISPR/Cas9-mediated gene replacement and in situ complementation system, it was found PcCesA1 is essential for the mycelial growth, cystospore germination, and pathogenicity of P. capsici. The normal deposition of newly synthesized cell wall components and the polar growth point formation were disrupted in PcCesA1 knockout mutants, suggesting that PcCesA1 plays an important role in the polar growth of P. capsici. Compared with the wild-type strains, PcCesA1 knockout mutants displayed a thicker inner layer cell wall and were more sensitive to carboxylic acid amide fungicides (CAAs). The contents of the cell wall polysaccharides 1,4-Glc, 1,4,6-Glc, and 1,3,4-Glc were reduced in PcCesA1 knockout mutants, suggesting that PcCesA1 affected cellulose content and glycosidic linkage crosslinking in the cell wall. Our findings demonstrate that PcCesA1 is required for cell wall biogenesis. Therefore, PcCesA1 may be a potential target for Phytophthora disease control.


Subject(s)
Phytophthora , Cell Wall , Cellulose , Glycosides , Plant Diseases
5.
Int J Biol Macromol ; 193(Pt B): 2343-2351, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34793810

ABSTRACT

The current study established a clearer understanding of the molecular basis for resistance to carboxylic acid amide (CAA) fungicides. Although four cellulose synthase (CesA) genes were investigated, only F1073L, G1105A, V1109L in CesA3 were found to link to CAA-resistance in Phytophthora capsici. Back-transformation experiments confirmed the role of the three mutations in CAA-resistance. Inheritance studies also confirmed the link and indicated the resistance was semi-dominant with the heterozygous F1 and F2 progeny exhibiting intermediate resistance levels compared to the homozygous parents, which was validated by the pyrosequencing results. The semi-dominant nature of CAA-resistance implies that it could be easy for resistance to spread once resistance emerged, being facilitated by both sexual and asexual reproduction. Bioinformatic analysis indicated all mutations occurred in either the first or second of the predicted transmembrane domains at C-terminus of CesA3. Resistant isolates bearing different combinations of mutations were found to exhibit different resistance levels to different CAAs, indicating that each mutation could make different contributions to resistance phenotype depending on structural differences in different CAAs. The current results highlight the complex combinations of mutations and resistance phenotype, and further reinforces the research necessity to completely characterize CAA-resistance to develop appropriate strategies to manage resistance development.


Subject(s)
Amides/pharmacology , Drug Resistance, Fungal/genetics , Fungicides, Industrial/pharmacology , Glucosyltransferases/genetics , Mutation/genetics , Phytophthora/genetics , Protein Domains/genetics , Carboxylic Acids/pharmacology , Membrane Proteins/genetics , Phenotype
6.
Front Microbiol ; 10: 2402, 2019.
Article in English | MEDLINE | ID: mdl-31708886

ABSTRACT

Phytophthora, a genus of oomycetes, contains many devastating plant pathogens, which cause substantial economic losses worldwide. Recently, CRISPR/Cas9-based genome editing tool was introduced into Phytophthora to delineate the functionality of individual genes. The available selection markers for Phytophthora transformation, however, are limited, which can restrain transgenic manipulation in some cases. We hypothesized that PcMuORP1, an endogenous fungicide resistance gene from P. capsici that confers resistance to the fungicide oxathiapiprolin via an altered target site in the ORP1 protein, could be used as an alternative marker. To test this hypothesis, the gene PcMuORP1 was introduced into the CRISPR/Cas9 system and complementation of a deleted gene in P. capsici was achieved using it as a selection marker. All of the oxathiapiprolin-resistant transformants were confirmed to contain the marker gene, indicating that the positive screening rate was 100%. The novel selection marker could also be used in other representative Phytophthora species including P. sojae and P. litchii, also with 100% positive screening rate. Furthermore, comparative studies indicated that use of PcMuORP1 resulted in a much higher efficiency of screening compared to the conventional selection marker NPT II, especially in P. capsici. Successive subculture and asexual reproduction in the absence of selective pressure were found to result in the loss of the selection marker from the transformants, which indicates that the PcMuORP1 gene would have little long term influence on the fitness of transformants and could be reused as the selection marker in subsequent projects. Thus, we have created an alternative selection marker for Phytophthora transformation by using a fungicide resistance gene, which would accelerate functional studies of genes in these species.

7.
J Proteome Res ; 16(3): 1193-1206, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28099032

ABSTRACT

Rice false smut, caused by Ustilaginoidea virens, produces significant losses in rice yield and grain quality and has recently emerged as one of the most important rice diseases worldwide. Despite its importance in rice production, relatively few studies have been conducted to illustrate the complex interactome and the pathogenicity gene interactions. Here a protein-protein interaction network of U. virens was built through two well-recognized approaches, interolog- and domain-domain interaction-based methods. A total of 20 217 interactions associated with 3305 proteins were predicted after strict filtering. The reliability of the network was assessed computationally and experimentally. The topology of the interactome network revealed highly connected proteins. A pathogenicity-related subnetwork involving up-regulated genes during early U. virens infection was also constructed, and many novel pathogenicity proteins were predicted in the subnetwork. In addition, we built an interspecies PPI network between U. virens and Oryza sativa, providing new insights for molecular interactions of this host-pathogen pathosystem. A web-based publicly available interactive database based on these interaction networks has also been released. In summary, a proteome-scale map of the PPI network was described for U. virens, which will provide new perspectives for finely dissecting interactions of genes related to its pathogenicity.


Subject(s)
Oryza/genetics , Plant Diseases/genetics , Protein Interaction Maps/genetics , Virulence/genetics , Genes, Fungal , Host-Pathogen Interactions/genetics , Hypocreales/pathogenicity , Oryza/microbiology , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...