Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 8: 731557, 2021.
Article in English | MEDLINE | ID: mdl-34676252

ABSTRACT

Purpose: We evaluated the long-term effect of a smartphone-facilitated home-based cardiac rehabilitation (HBCR) model in revascularized patients with coronary heart disease (CHD) on major adverse cardiac events (MACE), and secondary outcomes, including safety, quality of life, and physical capacity. Methods: It was a prospective observational cohort study including a total of 335 CHD patients after successful percutaneous coronary intervention (PCI) referred to the CR clinic in China between July 23, 2015 and March 1, 2018. Patients were assigned to two groups: HBCR tailored by monitoring and telecommunication via smartphone app (WeChat) (HBCR group, n = 170) or usual care (control group, n = 165), with follow-up for up to 42 months. Propensity score matching was conducted to match patients in the HBCR group with those in the control group. The patients in the HBCR group received educational materials weekly and individualized exercise prescription monthly, and the control group only received 20-min education at baseline in the CR clinic. The primary outcome was MACE, analyzed by Cox regression models. The changes in the secondary outcomes were analyzed by paired t-test among the matched cohort. Results: One hundred thirty-five HBCR patients were matched with the same number of control patients. Compared to the control group, the HBCR group had a much lower incidence of MACE (1.5 vs. 8.9%, p = 0.002), with adjusted HR = 0.21, 95% CI 0.07-0.85, and also had reduced unscheduled readmission (9.7 vs. 23.0%, p = 0.002), improved exercise capacity [maximal METs (6.2 vs. 5.1, p = 0.002)], higher Seattle Angina Questionnaire score, and better control of risk factors. Conclusions: The Chinese HBCR model using smartphone interaction is a safe and effective approach to decrease cardiovascular risks of patients with CHD and improve patients' wellness. Clinical Trial Registration: http://www.chictr.org.cn, identifier: ChiCTR1800015042.

2.
Front Physiol ; 12: 640302, 2021.
Article in English | MEDLINE | ID: mdl-33776794

ABSTRACT

Many sea-level residents suffer from acute mountain sickness (AMS) when first visiting altitudes above 4,000 m. Exercise tolerance also decreases as altitude increases. We observed exercise capacity at sea level and under a simulated hypobaric hypoxia condition (SHHC) to explore whether the response to exercise intensity represented by physiological variables could predict AMS development in young men. Eighty young men from a military academy underwent a standard treadmill exercise test (TET) and biochemical blood test at sea level, SHHC, and 4,000-m altitude, sequentially, between December 2015 and March 2016. Exercise-related variables and 12-lead electrocardiogram parameters were obtained. Exercise intensity and AMS development were investigated. After exposure to high altitude, the count of white blood cells, alkaline phosphatase and serum albumin were increased (P < 0.05). There were no significant differences in exercise time and metabolic equivalents (METs) between SHHC and high-altitude exposures (7.05 ± 1.02 vs. 7.22 ± 0.96 min, P = 0.235; 9.62 ± 1.11 vs. 9.38 ± 1.12, P = 0.126, respectively). However, these variables were relatively higher at sea level (8.03 ± 0.24 min, P < 0.01; 10.05 ± 0.31, P < 0.01, respectively). Thus, subjects displayed an equivalent exercise tolerance upon acute exposure to high altitude and to SHHC. The trends of cardiovascular hemodynamics during exercise under the three different conditions were similar. However, both systolic blood pressure and the rate-pressure product at every TET stage were higher at high altitude and under the SHHC than at sea level. After acute exposure to high altitude, 19 (23.8%) subjects developed AMS. Multivariate logistic regression analysis showed that METs under the SHHC {odds ratio (OR) 0.355 per unit increment [95% confidence intervals (CI) 0.159-0.793], P = 0.011}, diastolic blood pressure (DBP) at rest under SHHC [OR 0.893 per mmHg (95%CI 0.805-0.991), P = 0.030], and recovery DBP 3 min after exercise at sea level [OR 1.179 per mmHg (95%CI 1.043-1.333), P = 0.008] were independently associated with AMS. The predictive model had an area under the receiver operating characteristic curve of 0.886 (95%CI 0.803-0.969, P < 0.001). Thus, young men have similar exercise tolerance in acute exposure to high altitude and to SHHC. Moreover, AMS can be predicted with superior accuracy using characteristics easily obtainable with TET.

SELECTION OF CITATIONS
SEARCH DETAIL
...