Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(21): 8106-8111, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38817588

ABSTRACT

Efficient electron-transporting materials (ETMs) are critical to achieving excellent performance of organic light-emitting diodes (OLEDs), yet developing such materials remains a major long-term challenge, particularly ETMs with high electron mobilities (µeles). Herein, we report a short conjugated ETM molecule (PICN) with a dipolar phenanthroimidazole group, which exhibits an electron mobility of up to 1.52 × 10-4 cm2 (V-1 s-1). The origin of this high µele is long-ranged, regulated special cage-like interactions with C-H⋯N radii, which are also favorable for the excellent efficiency stability and operational stability in OLEDs. It is worth noting that the green phosphorescent OLED operation half-lifetimes can reach up to 630 h under unencapsulation, which is 20 times longer than that based on the commonly used commercial ETM TPBi.

2.
Small ; : e2400141, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38431944

ABSTRACT

Seawater electrolysis holds tremendous promise for the generation of green hydrogen (H2 ). However, the system of seawater-to-H2 faces significant hurdles, primarily due to the corrosive effects of chlorine compounds, which can cause severe anodic deterioration. Here, a nickel phosphide nanosheet array with amorphous NiMoO4 layer on Ni foam (Ni2 P@NiMoO4 /NF) is reported as a highly efficient and stable electrocatalyst for oxygen evolution reaction (OER) in alkaline seawater. Such Ni2 P@NiMoO4 /NF requires overpotentials of just 343 and 370 mV to achieve industrial-level current densities of 500 and 1000 mA cm-2 , respectively, surpassing that of Ni2 P/NF (470 and 555 mV). Furthermore, it maintains consistent electrolysis for over 500 h, a significant improvement compared to that of Ni2 P/NF (120 h) and Ni(OH)2 /NF (65 h). Electrochemical in situ Raman spectroscopy, stability testing, and chloride extraction analysis reveal that is situ formed MoO4 2- /PO4 3- from Ni2 P@NiMoO4 during the OER test to the electrode surface, thus effectively repelling Cl- and hindering the formation of harmful ClO- .

3.
Sensors (Basel) ; 24(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38475123

ABSTRACT

Unmanned aerial vehicle (UAV)-based geological mapping is significant for understanding the geological structure in the high-steep slopes, but the images obtained in these areas are inevitably influenced by the backlit effect because of the undulating terrain and the viewpoint change of the camera mounted on the UAV. To handle this concern, a novel backlit image restoration method is proposed that takes the real-world application into account and addresses the color distortion issue existing in backlit images captured in high-steep slope scenes. Specifically, there are two main steps in the proposed method, which consist of the backlit removal and the color and detail enhancement. The backlit removal first eliminates the backlit effect using the Retinex strategy, and then the color and detail enhancement step improves the image color and sharpness. The author designs extensive comparison experiments from multiple angles and applies the proposed method to different engineering applications. The experimental results show that the proposed method has potential compared to other main-stream methods both in qualitative visual effects and universal quantitative evaluation metrics. The backlit images processed by the proposed method are significantly improved by the process of feature key point matching, which is very conducive to the fine construction of 3D geological models of the high-steep slope.

4.
Sci Data ; 11(1): 74, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38228620

ABSTRACT

Combination therapy can greatly improve the efficacy of cancer treatment, so identifying the most effective drug combination and interaction can accelerate the development of combination therapy. Here we developed a computational network biological approach to identify the effective drug which inhibition risk pathway crosstalk of cancer, and then filtrated and optimized the drug combination for cancer treatment. We integrated high-throughput data concerning pan-cancer and drugs to construct miRNA-mediated crosstalk networks among cancer pathways and further construct networks for therapeutic drug. Screening by drug combination method, we obtained 687 optimized drug combinations of 83 first-line anticancer drugs in pan-cancer. Next, we analyzed drug combination mechanism, and confirmed that the targets of cancer-specific crosstalk network in drug combination were closely related to cancer prognosis by survival analysis. Finally, we save all the results to a webpage for query ( http://bio-bigdata.hrbmu.edu.cn/oDrugCP/ ). In conclusion, our study provided an effective method for screening precise drug combinations for various cancer treatments, which may have important scientific significance and clinical application value for tumor treatment.


Subject(s)
Antineoplastic Agents , MicroRNAs , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Drug Combinations , Computational Biology/methods
5.
Math Biosci Eng ; 20(5): 8708-8726, 2023 03 06.
Article in English | MEDLINE | ID: mdl-37161218

ABSTRACT

Nowadays, the increasing number of medical diagnostic data and clinical data provide more complementary references for doctors to make diagnosis to patients. For example, with medical data, such as electrocardiography (ECG), machine learning algorithms can be used to identify and diagnose heart disease to reduce the workload of doctors. However, ECG data is always exposed to various kinds of noise and interference in reality, and medical diagnostics only based on one-dimensional ECG data is not trustable enough. By extracting new features from other types of medical data, we can implement enhanced recognition methods, called multimodal learning. Multimodal learning helps models to process data from a range of different sources, eliminate the requirement for training each single learning modality, and improve the robustness of models with the diversity of data. Growing number of articles in recent years have been devoted to investigating how to extract data from different sources and build accurate multimodal machine learning models, or deep learning models for medical diagnostics. This paper reviews and summarizes several recent papers that dealing with multimodal machine learning in disease detection, and identify topics for future research.


Subject(s)
Diagnostic Imaging , Machine Learning , Humans , Datasets as Topic
6.
Quant Imaging Med Surg ; 13(3): 1312-1322, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36915344

ABSTRACT

Background: Image segmentation is an important step during the processing of medical images. For example, for the computer aid diagnostic systems for lung cancer image analysis, the segmented regions of tumors would help doctors in early diagnosis to determine timely and appropriate treatment possibilities and thereby improve the survival rate of the patients. However, general clinical routines of manual segmentation for large number of medical images are very difficult and time consuming, which is the challenge we aim to tackle using our proposed method. Methods: A novel image segmentation method with evolutionary learning technique named Group Theoretic Particle Swarm Optimization is proposed. It can tackle multi-level thresholding optimization problem during the segmentation process and rebuild the search paradigm according to the solid mathematical foundation of symmetric group from four designable aspects, which are particle encoding, solution landscape, neighborhood movement and swarm topology, respectively. The Kapur's entropy of multi-level thresholds is assessed as the objective function. Results: In contrast to those conventional metaheuristics methods for lung cancer image segmentation, this newly presented method generates the best performance result among them. Experimental results show that its Kapur's entropy has the value of 9.07, which is 16% higher than the worst case. Computational time is acceptable at the cost of 173.730 seconds, average level of evaluation metrics [Kappa, Precision, Recall, F1-measure, intersection over union (IoU) and receiver operating characteristic (ROC)] is over 90%, and search process of multi-level threshold combination would finally converge in the later phase of iterations after 700. The ablation study indicates that all components are significant to the contributions of our proposed method. Conclusions: Group Theoretic Particle Swarm Optimization for multi-level threshold segmentation is an efficient way to split a medical image into distinct regions and extract tumor tissues regions from the background. It maintains the balanced relationship between diversification and intensification during the search process and helps clinicians to make the diagnosis more accurately. Our proposed method processes potential medical value and clinical meanings.

7.
Nucleic Acids Res ; 51(D1): D870-D876, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36300619

ABSTRACT

CellMarker 2.0 (http://bio-bigdata.hrbmu.edu.cn/CellMarker or http://117.50.127.228/CellMarker/) is an updated database that provides a manually curated collection of experimentally supported markers of various cell types in different tissues of human and mouse. In addition, web tools for analyzing single cell sequencing data are described. We have updated CellMarker 2.0 with more data and several new features, including (i) Appending 36 300 tissue-cell type-maker entries, 474 tissues, 1901 cell types and 4566 markers over the previous version. The current release recruits 26 915 cell markers, 2578 cell types and 656 tissues, resulting in a total of 83 361 tissue-cell type-maker entries. (ii) There is new marker information from 48 sequencing technology sources, including 10X Chromium, Smart-Seq2 and Drop-seq, etc. (iii) Adding 29 types of cell markers, including protein-coding gene lncRNA and processed pseudogene, etc. Additionally, six flexible web tools, including cell annotation, cell clustering, cell malignancy, cell differentiation, cell feature and cell communication, were developed to analysis and visualization of single cell sequencing data. CellMarker 2.0 is a valuable resource for exploring markers of various cell types in different tissues of human and mouse.


Subject(s)
Cells , Databases, Genetic , Single-Cell Gene Expression Analysis , Animals , Humans , Mice , Databases, Nucleic Acid , Neoplasms/genetics , Sequence Analysis , Cells/cytology
8.
J Environ Manage ; 319: 115619, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35810583

ABSTRACT

Heavy metals (HMs) pose serious threats to both human and environmental health and therefore, effective and low-cost techniques to remove HMs are urgently required. Here we report a facile Fe-tannin coating method for zero-valent iron (ZVI) including nanoparticles (nZVI) and foam (Fefoam), and demonstrate that the generated Fe-tannin coating would remove the inherent passive iron oxide shell of ZVI and provide channels for the galvanic replacement reaction between ZVI and HM ions. Electrochemical characterizations demonstrate that the Fe core of the modified ZVI materials could be easily oxidized and transfer electrons to HM ions owing to the facile mass transport and charge transfer. In 40 min, nZVI@Fe-TA exhibits excellent performances for Cd(II), Ni(II), Pb(II), Hg(II), Cu(II) and Cr(VI) removal, with the apparent removal rate constants of 0.083, 0.085, 0.083, 0.073, 0.092 and 0.078 min-1, respectively. It is found that the surface area normalized rate constants of nZVI@Fe-TA are 4-7 times higher than that of nZVI@Fe2O3 counterpart, suggesting that the improved HM removal reactivity of nZVI@Fe-TA is derived from the surface modification. Moreover, nZVI@Fe-TA has advantages in resisting interference and in the simultaneous removal of different HM ions. Under a 30 min hydraulic retention time, Fefoam@Fe-TA could remove 98% HMs in the successive process. For real electroplating wastewater, Fefoam@Fe-TA exhibits excellent performance for Cr(VI) and Ni(II) removal, producing effluent of stable quality that meets local emission regulation. This study provides a facile strategy to remove the inherent passive iron oxide shell and enhance the HM removal reactivity for ZVI materials.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Chromium/analysis , Humans , Ions , Iron/chemistry , Metals, Heavy/chemistry , Tannins , Water Pollutants, Chemical/chemistry
9.
Opt Express ; 30(4): 6216-6235, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209562

ABSTRACT

Underwater images captured by optical cameras can be degraded by light attenuation and scattering, which leads to deteriorated visual image quality. The technique of underwater image enhancement plays an important role in a wide range of subsequent applications such as image segmentation and object detection. To address this issue, we propose an underwater image enhancement framework which consists of an adaptive color restoration module and a haze-line based dehazing module. First, we employ an adaptive color restoration method to compensate the deteriorated color channels and restore the colors. The color restoration module consists of three steps: background light estimation, color recognition, and color compensation. The background light estimation determines the image is blueish or greenish, and the compensation is applied in red-green or red-blue channels. Second, the haze-line technique is employed to remove the haze and enhance the image details. Experimental results show that the proposed method can restore the color and remove the haze at the same time, and it also outperforms several state-of-the-art methods on three publicly available datasets. Moreover, experiments on an underwater object detection dataset show that the proposed underwater image enhancement method is able to improve the accuracy of the subsequent underwater object detection framework.

10.
Math Biosci Eng ; 18(6): 9076-9093, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34814336

ABSTRACT

With the rise in the popularity of Internet of Things (IoT) in-home health monitoring, the demand of data processing and analysis increases at the server. This is especially true for ECG data which has to be collected and analyzed continuously in real time. The data transmission and storage capacity of a simple home-use IoT system is often limited. In order to provide a responsive and reasonably high-resolution analysis over the data, the ECG recorder sampling rate must be tuned to an acceptable level such as 50Hz (compared to between 100Hz and 500Hz in lab), a huge amount of time series are to be gathered and dealt with. Therefore, a suitable sampling method that helps shorten the ECG data transformation time and uploading time is very important for cost saving.. In this paper, how to down sample the ECG data is investigated; instead of traditional data sampling methods, the use of a novel Brick-up Metaheuristic Optimization Algorithm (BMOA) that automatically optimizes the sampling of ECG data is proposed. By its adaptive design in choosing the most appropriate components, BMOA can build in real-time a best metaheuristic optimization algorithm for each device user assuming no two ECG data series are exactly identical. This dynamic pre-processing approach ensures each time the most optimal part of the ECG data series is harvested for health analysis from the raw data, in different scenarios from different users. In this study various application scenarios using real ECG datasets are simulated. The experimentation is tested with one of the most commonly used ECG classification methods, Long Short-Term Memory Network. The result shows the ECG data sampling by BMOA is indeed adaptive, the classification efficiency is improved, and the data storage requirement is reduced.


Subject(s)
Algorithms , Electrocardiography , Arrhythmias, Cardiac , Computers , Humans , Monitoring, Physiologic
11.
Mol Ther Nucleic Acids ; 23: 667-681, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33575113

ABSTRACT

Aberrant expression of long non-coding RNAs (lncRNA) is associated with altered DNA methylation and histone modifications during carcinogenesis. However, identifying epigenetically dysregulated lncRNAs and characterizing their functional mechanisms in different cancer subtypes are still major challenges for cancer studies. In this study, we systematically analyzed the epigenetic alterations of lncRNAs at important regulatory elements in three breast cancer subtypes. We identified 87, 691, and 1,197 epigenetically dysregulated lncRNAs in luminal, basal, and claudin-low subtypes of breast cancer, respectively. The landscape of epigenetically dysregulated lncRNAs at enhancer elements revealed that epigenetic changes of the majority of lncRNAs occurred in a subtype-specific manner and contributed to subtype-specific biological functions. We identified six acetylation of lysine 27 on histone H3 (H3K27ac)-dysregulated lncRNAs and three DNA methylation-dysregulated lncRNAs (CTC-303L1.2, RP11-738B7.1, and SLC26A4-AS1) as prognostic biomarkers of basal subtype. These lncRNAs were involved in immune response-related biological functions. Treatment of the basal breast cancer cell line MDA-MB-468 with CREBBP/EP300 bromodomain inhibitors downregulated H3K27 acetylation levels and caused a decrease in the expression of five H3K27ac-dysregulated lncRNAs (LINC00393, KB-1836B5.1, RP1-140K8.5, AC005162.1, and AC020916.2) and inhibition of the growth of breast cancer cells. One epigenetically dysregulated lncRNA (LINC01983) and four lncRNA regulators (UCA1, RP11-221J22.2, RP11-221J22.1, and RP1-212P9.3) were identified as prognostic biomarkers of the luminal molecular subtype of breast cancer by controlling the tumor necrosis factor (TNF) signaling pathway, T helper (Th)17 cell differentiation, and T cell migration. Finally, our results highlighted a profound role of enhancer-related H3K27ac-dysregulated lncRNAs, DNA methylation-dysregulated lncRNAs, and lncRNA regulators in breast cancer subtype carcinogenesis and their potential prognostic value.

12.
Appl Opt ; 59(32): 10049-10060, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33175779

ABSTRACT

Imaging through the wavy air-water surface suffers from severe geometric distortions, which are caused by the light refraction effect that affects the normal operations of underwater exploration equipment such as the autonomous underwater vehicle (AUV). In this paper, we propose a deep learning-based framework, namely the self-attention generative adversarial network (SAGAN), to remove the geometric distortions and restore the distorted image captured through the water-air surface. First, a K-means-based image pre-selection method is employed to acquire a less distorted image that preserves much useful information from an image sequence. Second, an improved generative adversarial network (GAN) is trained to translate the distorted image into the non-distorted image. During this process, the attention mechanism and the weighted training objective are adopted in our GAN framework to get the high-quality restored results of distorted underwater images. The network is able to restore the colors and fine details in the distorted images by combining the three objective losses, i.e., the content loss, the adversarial loss, and the perceptual loss. Experimental results show that our proposed method outperforms other state-of-the-art methods on the validation set and our sea trial set.

13.
Comput Methods Programs Biomed ; 197: 105724, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32877817

ABSTRACT

BACKGROUND AND OBJECTIVE: Bayesian network is a probabilistic model of which the prediction accuracy may not be one of the highest in the machine learning family. Deep learning (DL) on the other hand possess of higher predictive power than many other models. How reliable the result is, how it is deduced, how interpretable the prediction by DL mean to users, remain obscure. DL functions like a black box. As a result, many medical practitioners are reductant to use deep learning as the only tool for critical machine learning application, such as aiding tool for cancer diagnosis. METHODS: In this paper, a framework of white learning is being proposed which takes advantages of both black box learning and white box learning. Usually, black box learning will give a high standard of accuracy and white box learning will provide an explainable direct acyclic graph. According to our design, there are 3 stages of White Learning, loosely coupled WL, semi coupled WL and tightly coupled WL based on degree of fusion of the white box learning and black box learning. In our design, a case of loosely coupled WL is tested on breast cancer dataset. This approach uses deep learning and an incremental version of Naïve Bayes network. White learning is largely defied as a systemic fusion of machine learning models which result in an explainable Bayes network which could find out the hidden relations between features and class and deep learning which would give a higher accuracy of prediction than other algorithms. We designed a series of experiments for this loosely coupled WL model. RESULTS: The simulation results show that using WL compared to standard black-box deep learning, the levels of accuracy and kappa statistics could be enhanced up to 50%. The performance of WL seems more stable too in extreme conditions such as noise and high dimensional data. The relations by Bayesian network of WL are more concise and stronger in affinity too. CONCLUSION: The experiments results deliver positive signals that WL is possible to output both high classification accuracy and explainable relations graph between features and class.


Subject(s)
Breast Neoplasms , Machine Learning , Algorithms , Bayes Theorem , Humans
14.
Nucleic Acids Res ; 48(D1): D118-D126, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31713618

ABSTRACT

Long non-coding RNAs (lncRNAs) are associated with human diseases. Although lncRNA-disease associations have received significant attention, no online repository is available to collect lncRNA-mediated regulatory mechanisms, key downstream targets, and important biological functions driven by disease-related lncRNAs in human diseases. We thus developed LncTarD (http://biocc.hrbmu.edu.cn/LncTarD/ or http://bio-bigdata.hrbmu.edu.cn/LncTarD), a manually-curated database that provides a comprehensive resource of key lncRNA-target regulations, lncRNA-influenced functions, and lncRNA-mediated regulatory mechanisms in human diseases. LncTarD offers (i) 2822 key lncRNA-target regulations involving 475 lncRNAs and 1039 targets associated with 177 human diseases; (ii) 1613 experimentally-supported functional regulations and 1209 expression associations in human diseases; (iii) important biological functions driven by disease-related lncRNAs in human diseases; (iv) lncRNA-target regulations responsible for drug resistance or sensitivity in human diseases and (v) lncRNA microarray, lncRNA sequence data and transcriptome data of an 11 373 pan-cancer patient cohort from TCGA to help characterize the functional dynamics of these lncRNA-target regulations. LncTarD also provides a user-friendly interface to conveniently browse, search, and download data. LncTarD will be a useful resource platform for the further understanding of functions and molecular mechanisms of lncRNA deregulation in human disease, which will help to identify novel and sensitive biomarkers and therapeutic targets.


Subject(s)
Computational Biology/methods , Databases, Genetic , Gene Expression Regulation , Genomics/methods , RNA Interference , RNA, Long Noncoding/genetics , Software , Genetic Association Studies , Genetic Predisposition to Disease , Humans , User-Computer Interface , Web Browser
SELECTION OF CITATIONS
SEARCH DETAIL
...