Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 24(1): 618, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853336

ABSTRACT

BACKGROUND: Extravillous trophoblast cell (EVT) differentiation and its communication with maternal decidua especially the leading immune cell type natural killer (NK) cell are critical events for placentation. However, appropriate in vitro modelling system and regulatory programs of these two events are still lacking. Recent trophoblast organoid (TO) has advanced the molecular and mechanistic research in placentation. Here, we firstly generated the self-renewing TO from human placental villous and differentiated it into EVTs (EVT-TO) for investigating the differentiation events. We then co-cultured EVT-TO with freshly isolated decidual NKs for further study of cell communication. TO modelling of EVT differentiation as well as EVT interaction with dNK might cast new aspect for placentation research. RESULTS: Single-cell RNA sequencing (scRNA-seq) was applied for comprehensive characterization and molecular exploration of TOs modelling of EVT differentiation and interaction with dNKs. Multiple distinct trophoblast states and dNK subpopulations were identified, representing CTB, STB, EVT, dNK1/2/3 and dNKp. Lineage trajectory and Seurat mapping analysis identified the close resemblance of TO and EVT-TO with the human placenta characteristic. Transcription factors regulatory network analysis revealed the cell-type specific essential TFs for controlling EVT differentiation. CellphoneDB analysis predicted the ligand-receptor complexes in dNK-EVT-TO co-cultures, which relate to cytokines, immunomodulation and angiogenesis. EVT was known to affect the immune properties of dNK. Our study found out that on the other way around, dNKs could exert effects on EVT causing expression changes which are functionally important. CONCLUSION: Our study documented a single-cell atlas for TO and its applications on EVT differentiation and communications with dNKs, and thus provide methodology and novel research cues for future study of human placentation.


Subject(s)
Placenta , Trophoblasts , Pregnancy , Female , Humans , Trophoblasts/metabolism , Decidua/metabolism , Cell Differentiation , Organoids , Killer Cells, Natural/metabolism , Cell Movement
2.
Pestic Biochem Physiol ; 156: 160-169, 2019 May.
Article in English | MEDLINE | ID: mdl-31027576

ABSTRACT

Succinate dehydrogenase (SDH) is demonstrably one of the most important molecular targets in development of new fungicide. In our continuous efforts to discover novel SDH inhibitors, forty-two carboxamide derivatives containing 1,2,3-triazole ring were designed and synthesized, which were precisely characterized by 1H NMR, ESI-MS, elemental analysis and X-ray single-crystal diffraction. The compounds were screened for antifungal activities against phytopathogenic fungi by mycelia growth inhibition assay in vitro. Compound A3-3 exhibited significant antifungal activity against Sclerotinia sclerotiorum, Botrytis cinerea, Rhizoctonia cerealis and Gaeumannomyces graminsis with EC50 values of 1.08, 8.75, 1.67 and 5.30 µg/mL, respectively, comparable to those of commercial SDHI boscalid. In vivo testing demonstrated that A3-3 was effective for suppressing rape sclerotinia rot, cucumber grey mould and wheat powdery mildew caused by S. sclerotiorum, B. cinerea and Blumeria graminis at a dosage of 200 µg/mL. Inhibition activities against SDH test proved the designed analogues were effective in the enzyme level. The molecular docking simulation revealed that A3-3 interacted with ARG43,TYR58 and TRP173 of the SDH through hydrogen bond and pi-pi interaction, which could explain the probable mechanism of action between the inhibitor and target protein.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Succinate Dehydrogenase/metabolism , Triazoles/chemistry , Enzyme Activation/drug effects , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...