Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(11): 3018-3021, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824317

ABSTRACT

We demonstrate a monolithic tunable dual-wavelength laser fabricated on erbium-doped lithium niobate on an insulator (Er:LNOI). The dual-wavelength laser enables independent tuning with a continuously linear electro-optic (EO)-modulated tuning range of 11.875 GHz at a tuning efficiency of 0.63 pm/V. Tunable microwave generation within 50 GHz with a maximum extinction ratio of 35 dB is experimentally demonstrated by further exploring the charge accumulation effect in LNOI. The monolithic design of this work paves the way for microscale integration of laser devices, presenting significant prospects in photonics research and applications.

2.
Nutrients ; 15(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37960207

ABSTRACT

(1) Background: Probiotics in the form of nutritional supplements are safe and potentially useful for strategic application among endurance athletes. Bifidobacterium animalis lactis BL-99 (BL-99) was isolated from the intestines of healthy Chinese infants. We combined plasma-targeted metabolomics and fecal metagenomics to explore the effect of 8 weeks of BL-99 supplementation on cross-country skiers' metabolism and sports performance. (2) Methods: Sixteen national top-level male cross-country skiers were recruited and randomly divided into a placebo group (C) and a BL-99 group (E). The participants took the supplements four times/day (with each of three meals and at 21:00) consistently for 8 weeks. The experiment was conducted in a single-blind randomized fashion. The subject's dietary intake and total daily energy consumption were recorded. Blood and stool samples were collected before and after the 8-week intervention, and body composition, muscle strength, blood biochemical parameters, plasma-targeted metabolomic data, and fecal metagenomic data were then analyzed. (3) Results: The following changes occurred after 8 weeks of BL-99 supplementation: (a) There was no significant difference in the average total daily energy consumption and body composition between the C and E groups. (b) The VO2max and 60°/s and 180°/s knee joint extensor strength significantly increased in both the C and E groups. By the eighth week, the VO2max and 60 s knee-joint extensor strength were significantly higher in the E group than in the C group. (c) The triglyceride levels significantly decreased in both the C and E groups. In addition, the LDL-C levels significantly decreased in the E group. (d) The abundance of Bifidobacterium animalis increased two-fold in the C group and forty-fold in the E group. (e) Plasma-targeted metabolomic analysis showed that, after eight weeks of BL-99 supplementation, the increases in DHA, adrenic acid, linoleic acid, and acetic acid and decreases in glycocholic acid and glycodeoxycholic acid in the E group were significantly higher than those in the C group. (f) Spearman correlation analysis showed that there was a significant positive correlation between Bifidobacterium animalis' abundance and SCFAs, PUFAs, and bile acids. (g) There was a significant correlation between the most significantly regulated metabolites and indicators related to sports performance and lipid metabolism. (4) Conclusions: Eight weeks of BL-99 supplementation combined with training may help to improve lipid metabolism and sports performance by increasing the abundance of Bifidobacterium, which can promote the generation of short-chain fatty acids and unsaturated fatty acids, and inhibit the synthesis of bile acids.


Subject(s)
Athletic Performance , Bifidobacterium animalis , Probiotics , Humans , Male , Bile Acids and Salts , Dietary Supplements , Fatty Acids, Volatile/analysis , Lipid Metabolism , Single-Blind Method
3.
Front Endocrinol (Lausanne) ; 14: 1295349, 2023.
Article in English | MEDLINE | ID: mdl-38033997

ABSTRACT

Cancer treatment still encounters challenges, such as side effects and drug resistance. The tripartite-motif (TRIM) protein family is widely involved in regulation of the occurrence, development, and drug resistance of tumors. MG53, a member of the TRIM protein family, shows strong potential in cancer therapy, primarily due to its E3 ubiquitin ligase properties. The classic membrane repair function and anti-inflammatory capacity of MG53 may also be beneficial for cancer prevention and treatment. However, MG53 appears to be a key regulatory factor in impaired glucose metabolism and a negative regulatory mechanism in muscle regeneration that may have a negative effect on cancer treatment. Developing MG53 mutants that balance the pros and cons may be the key to solving the problem. This article aims to summarize the role and mechanism of MG53 in the occurrence, progression, and invasion of cancer, focusing on the potential impact of the biological function of MG53 on cancer therapy.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , Neoplasms/drug therapy , Neoplasms/genetics
4.
Front Psychol ; 14: 1183460, 2023.
Article in English | MEDLINE | ID: mdl-37637918

ABSTRACT

Background: Carbohydrates are often used as boosters for endurance and high-intensity exercise. However, it is unclear whether carbohydrate drinks intake before or during exercise can affect specific domains of cognitive function, such as Executive Function (EF). Methods: Following the guidance of PRISMA 2020, we searched six major databases including PubMed, WOS, SPORTDiscus, Cochrane, Embase, and Scopus. Outcomes were presented in the form of Reaction Time (RT), Accuracy (ACC), and Scores (Score) for performing EF tests. Effect sizes were calculated from the test results of EF and expressed as standardized mean differences (SMDs). After analyzing the overall results, we performed subgroup analyses based on the athletes' program characteristics. Results: After retrieving a total of 5,355 articles, ten randomized controlled trials (RCTs) were identified and included in this review. The overall results showed that the intake of carbohydrate drinks before or during exercise did not have a significant effect on the reduction of EF after exercise (ACC (-0.05 [-0.27, 0.18]); RT (-0.18 [-0.45, 0.09]); Score (0.24 [-0.20, 0.68])). The subgroup analyses based on open skill sports and close skill sports also showed invalid results, but the results of RT ended up with different preference (ACC of open skill sports athletes (-0.10 [-0.34, 0.14]); RT of open skill athletes (-0.27 [-0.60, 0.07]); RT of close skill athletes (0.29 [-0.24, 0.82])). Conclusion: The intake of 6-12% of single or mixed carbohydrates before or during exercise was not significantly effective in reducing the decline in EF after exercise. Our findings may have been influenced by the type of intervention, dose, mode of administration, or individual variability of the included subjects.

5.
Light Sci Appl ; 12(1): 33, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36725833

ABSTRACT

The developing advances of microresonator-based Kerr cavity solitons have enabled versatile applications ranging from communication, signal processing to high-precision measurements. Resonator dispersion is the key factor determining the Kerr comb dynamics. Near the zero group-velocity-dispersion (GVD) regime, low-noise and broadband microcomb sources are achievable, which is crucial to the application of the Kerr soliton. When the GVD is almost vanished, higher-order dispersion can significantly affect the Kerr comb dynamics. Although many studies have investigated the Kerr comb dynamics near the zero-dispersion regime in microresonator or fiber ring system, limited by dispersion profiles and dispersion perturbations, the near-zero-dispersion soliton structure pumped in the anomalous dispersion side is still elusive so far. Here, we theoretically and experimentally investigate the microcomb dynamics in fiber-based Fabry-Perot microresonator with ultra-small anomalous GVD. We obtain 2/3-octave-spaning microcombs with ~10 GHz spacing, >84 THz span, and >8400 comb lines in the modulational instability (MI) state, without any external nonlinear spectral broadening. Such widely-spanned MI combs are also able to enter the soliton state. Moreover, we report the first observation of anomalous-dispersion based near-zero-dispersion solitons, which exhibits a local repetition rate up to 8.6 THz, an individual pulse duration <100 fs, a span >32 THz and >3200 comb lines. These two distinct comb states have their own advantages. The broadband MI combs possess high conversion efficiency and wide existing range, while the near-zero-dispersion soliton exhibits relatively low phase noise and ultra-high local repetition rate. This work complements the dynamics of Kerr cavity soliton near the zero-dispersion regime, and may stimulate cross-disciplinary inspirations ranging from dispersion-controlled microresonators to broadband coherent comb devices.

6.
Opt Lett ; 46(17): 4128-4131, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34469956

ABSTRACT

The erbium-doped lithium niobate on insulator (Er:LNOI) platform has great promise in the application of telecommunication, microwave photonics, and quantum photonics, due to its excellent electro-optic, piezo-electric, nonlinear nature, as well as the gain characteristics in the telecommunication C-band. Here, we report a single-frequency Er:LNOI integrated laser based on a dual-cavity structure. Facilitated by the Vernier effect and gain competition, the single-frequency laser can operate stably at 1531 nm wavelength with a 1484 nm pump laser. The output laser has a power of 0.31 µW, a linewidth of 1.2 MHz, and a side mode suppression ratio of 31 dB. Our work allows the direct integration of this laser source with existing LNOI components and paves the way for a fully integrated LNOI system.

7.
Int J Anal Chem ; 2020: 8873713, 2020.
Article in English | MEDLINE | ID: mdl-32802062

ABSTRACT

Salt is a common cause of damage to building materials used in cultural and historical buildings. The damage to aged wood in historical wooden buildings has not been extensively studied, resulting in the need for a more detailed analysis. In this work, Yingxian Wooden Pagoda, a typical historical wooden structure, was taken as the research object. Multichemical analyses were conducted to evaluate and understand the salt-induced damage to the aged wood using a scanning electron microscope equipped with an energy-dispersive X-ray spectrometer, sulphur K-edge X-ray absorption near-edge structure spectroscopy, X-ray fluorescence spectroscopy, X-ray powder diffraction, and attenuated total reflectance fourier transformed infrared spectroscopy. The results showed the presence of invasive salt crystallisations and ions in the aged samples. The source of these invasive elements was deduced by identifying the type, amount, and valency of the elements; they were found to be derived from environmental factors such as acid rain and atmospheric pollutant. The unique damage mechanism and route induced by salt in historical buildings made of wood were summarised; the damage was attributed to the accumulation of sulphate salt causing hydrolysis of the carbohydrates and salt crystallisation resulting in mechanical damage. This interdisciplinary study is significant for decision making in studies related to the preservation and evaluation of historical wooden buildings.

8.
Opt Express ; 28(10): 14933-14947, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32403526

ABSTRACT

Dissipative Kerr solitons (DKS) in high-Q microresonators have attracted considerable attention for their broadband optical frequency combs and ultra-short pulse generation. Owing to thermal effects, complicated tuning strategies are required to generate and sustain the single-soliton state in microresonators. In this paper, we propose a novel microresonator scheme based on the Fabry-Pérot fiber resonator and single-layer graphene saturable absorber (SA) and demonstrate that this design allows deterministic single-soliton generation without frequency tuning and has strong robustness against pump perturbation. The soliton range and thermal instability of the proposed device are also discussed. This work facilitates a novel nonlinear platform connecting high-Q microresonators and conventional SA-assisted mode-locking operations.

9.
PLoS One ; 13(12): e0208474, 2018.
Article in English | MEDLINE | ID: mdl-30513114

ABSTRACT

BACKGROUND: Hypoxia training enhances the endurance capacity of athletes. This response may in part be attributed to the hypoxia-induced increase in antioxidant capacity in skeletal muscles. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor which regulates the expression of genes via binding to the antioxidant-response element (ARE) of these genes, plays a crucial role in stimulating the body's defense system and potentially responds to hypoxia. Meanwhile, hypoxia-inducible factor-1α (HIF-1α) is an important player in protecting cells from hypoxic stress. The purpose of this study was to investigate the effects of acute hypoxia exposure with different durations on the activation of Nrf2-ARE pathway and a possible regulatory role of HIF-1α in these responses. METHODS: C57BL/6J mice were allocated into the non-hypoxia 0-hour, 6-hour, 24-hour, and 48-hour hypoxic exposure (11.2% oxygen) groups. The quadriceps femoris was collected immediately after hypoxia. Further, to investigate the possible role of HIF-1α, C2C12 myoblasts with HIF-1α knockdown by small interfering RNA (siRNA) and the inducible HIF-1α transgenic mice were employed. RESULTS: The results showed that 48-hour hypoxia exposure up-regulated protein expression of Nrf2, Nrf2/ARE binding activity and the transcription of antioxidative genes containing ARE (Sod1 and others) in mouse skeletal muscle. Moreover, HIF-1α siRNA group of C2C12 myoblasts showed a remarkable inhibition of Nrf2 protein expression and nuclear accumulation in hypoxia exposure for 72 hours compared with that in siRNA-Control group of the cells. In addition, HIF-1α transgenic mice gave higher Nrf2 protein expression, Nrf2/ARE binding activity and expressions of Nrf2-mediated antioxidative genes in their skeletal muscle, compared with those in the wild-type mice. CONCLUSIONS: The findings suggested that the acute hypoxia exposure could trigger the activation of Nrf2-ARE pathway, with longer duration associated with higher responses, and HIF-1α expression might be involved in promoting the Nrf2-mediated antioxidant responses in skeletal muscle.


Subject(s)
Antioxidant Response Elements/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia , Muscle, Skeletal/metabolism , NF-E2-Related Factor 2/genetics , Animals , Antioxidant Response Elements/genetics , Antioxidants/metabolism , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/drug effects , NF-E2-Related Factor 2/metabolism , Oxygen/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...