Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.629
Filter
1.
Neural Regen Res ; 20(1): 277-290, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767492

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202501000-00035/figure1/v/2024-05-14T021156Z/r/image-tiff Our previous study found that rat bone marrow-derived neural crest cells (acting as Schwann cell progenitors) have the potential to promote long-distance nerve repair. Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication. Nevertheless, the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear. To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves, we collected conditioned culture medium from hypoxia-pretreated neural crest cells, and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation. The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells. We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells. Subsequently, to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons, we used a microfluidic axonal dissociation model of sensory neurons in vitro, and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons, which was greatly dependent on loaded miR-21-5p. Finally, we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb, as well as muscle tissue morphology of the hind limbs, were obviously restored. These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p. miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome. This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves, and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.

2.
ERJ Open Res ; 10(3)2024 May.
Article in English | MEDLINE | ID: mdl-38770009

ABSTRACT

Background: In China, the prevalence of severe asthma with eosinophilic phenotype is rising, yet treatment options are limited. Mepolizumab is the first targeted biologic therapy for eosinophilic-driven disease in China. This study (clinicaltrials.gov identifier NCT03562195) evaluated efficacy and safety of mepolizumab in Chinese patients with severe asthma. Methods: The phase III, multicentre, randomised, placebo-controlled, double-blind, parallel-group study enrolled patients aged ≥12 years with severe asthma, with two or more exacerbations in the previous year, and on inhaled corticosteroids plus at least one controller medication. Following a 1-4-week run-in, patients were randomised 1:1 to mepolizumab 100 mg or placebo subcutaneously every 4 weeks for 52 weeks. The primary end-point was annualised rate of clinically significant exacerbations (CSEs) through week 52. Secondary end-points were time to first CSE, frequency of CSEs requiring hospitalisation/emergency department visits or hospitalisation over 52 weeks, mean change in St George's Respiratory Questionnaire (SGRQ) total score and pre-bronchodilator forced expiratory volume in 1 s (FEV1) at week 52; safety was evaluated. Results: The modified intention-to-treat population included 300 patients. At week 52 with mepolizumab versus placebo, annualised rate of CSEs was 65% lower (0.45 versus 1.31 events per year; rate ratio 0.35, 95% CI 0.24-0.50; p<0.001); time to first CSE longer (hazard ratio 0.38, 95% CI 0.26-0.56; p<0.001) and number of CSEs requiring hospitalisation/emergency department visit lower (rate ratio 0.30, 95% CI 0.12-0.77; p=0.012). From baseline to week 52, SGRQ score improved (p=0.001) and pre-bronchodilator FEV1 increased (p=0.006). Incidence of adverse events was similar between treatment groups. Conclusion: Mepolizumab provided clinical benefits to patients with severe asthma in China and showed a favourable benefit-risk profile.

3.
Open Med (Wars) ; 19(1): 20230885, 2024.
Article in English | MEDLINE | ID: mdl-38770177

ABSTRACT

The pathogenesis of ulcerative colitis (UC) involves chronic inflammation of the submucosal layer and disruption of epithelial barrier function within the gastrointestinal tract. Connexin 43 (Cx43) has been implicated in the pathogenesis of intestinal inflammation and its associated carcinogenic effects. However, a comprehensive analysis of Cx43's role in mucosal and peripheral immunity in patients with UC is lacking. In this study, the colon tissues of patients with UC exhibited severe damage to the intestinal mucosal barrier, resulting in a significant impairment of junctional communication as observed by transmission electron microscopy. The mRNA expression of Cx43 was found to be significantly elevated in the UC group compared to the control group, as determined using the Affymetrix expression profile chip and subsequently validated using qRT-PCR. The immunofluorescence analysis revealed a significantly higher mean fluorescence intensity of Cx43 in the UC group compared to the control group. Additionally, Cx43 was observed in both the cell membrane and nucleus, providing clear evidence of nuclear translocation. The proportion of Cx43 in the UC group for CD4+ and CD8+ T lymphocytes was increased in the control group, but only the proportion of Cx43 for CD8+ T lymphocytes showed significant difference by flow cytometry. The involvement of Cx43 in the pathogenesis of UC and its potential role in mucosal immunity warrants further investigation, as it holds promise as a prospective biomarker and therapeutic target for this condition. The proportion of Cx43 in the UC group for CD4+ and CD8+ T lymphocytes was increased in the control group, but only the proportion of Cx43 for CD8+ T lymphocytes showed a significant difference.

4.
Asian J Androl ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38727211

ABSTRACT

ABSTRACT: Infections and inflammatory reactions in the male genital tract are the leading causes of male infertility with a prevalence of 6%-10%, primarily affecting testicular and epididymal function and ultimately compromising sperm quality. However, most infertile patients with genital infection/inflammation are asymptomatic and easily overlooked. Traditional indicators, including white blood cells, elastase, and other components in semen, can reflect inflammation of the genital tract, but there is still a lack of a uniform standard method of detection. Therefore, it is necessary to explore reliable markers in semen that reflect the inflammatory status of the genital tract. Using the experimental autoimmune orchitis (EAO) model to simulate noninfectious chronic orchitis, we successfully collected ejaculated seminal fluid from EAO rats using optimized electrical stimulation devices. Proteomic analysis was performed using isobaric tags for relative and absolute quantification (iTRAQ). Compared to the control group, 55 upregulated and 105 downregulated proteins were identified in seminal plasma samples from the EAO group. In a preliminary screening, the inflammation-related protein S100A8/A9 was upregulated. We further verified that S100A8/A9 was increased in seminal plasma and highly expressed in testicular macrophages of the EAO model. In patients with oligoasthenospermia and genital tract infections, we also found that S100A8/A9 levels were remarkably increased in seminal plasma and testicular macrophages. S100A8/A9 in semen may be a potential biomarker for chronic genital inflammation. Our study provides a new potential biomarker for early diagnosis and further understanding of male infertility caused by genital inflammation.

5.
Anim Biosci ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38754847

ABSTRACT

Objective: This study investigated the impact of Aspergillus niger lysing polysaccharide monooxygenase (AnLPMO) on in vitro rumen microbial fermentation of rice straw. Methods: AnLPMO was heterologously expressed in Escherichia coli. Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy analyzed the surface structure of rice straw after AnLPMO treatment. Two in vitro experiments, coupled with 16S high-throughput sequencing and qRT-PCR techniques, assessed the influence of AnLPMO on rumen microbial fermentation of rice straw. Results: AnLPMO exhibited peak activity at 40 °C and pH 6.5, with a preference for rice straw xylan hydrolysis, followed by Avicel. AnLPMO application led to the fractional removal of cellulose and hemicelluloses and a notable reduction in the levels of carbon elements and C-C groups present on the surface of rice straw. Compared to the control (no AnLPMO), supplementing AnLPMO at 1.1 U-2.0 U significantly enhanced in vitro digestibility of dry matter (IVDMD, P < 0.01), total gas production (P < 0.01), and concentrations of total volatile fatty acids (VFA, P < 0.01), acetate (P < 0.01), and ammonia-N (P < 0.01). Particularly, the 1.4 U AnLPMO group showed a 14.8% increase in IVDMD. In the second experiment, compared to deactivated AnLPMO (1.4 U), supplementing bioactive AnLPMO at 1.4 U increased IVDMD (P = 0.01), total gas production (P = 0.04), and concentrations of total VFA (P < 0.01), propionate (P < 0.01), and ammonia-N (P < 0.01), with a limited 9.6% increase in IVDMD. Supplementing AnLPMO stimulated the growth of ruminal bacterial taxa facilitating fiber degradation, including Proteobacteria, Spirochaetes, Succinivibrio, Rikenellaceae_RC9_Gut_Group, Prevotelaceae_UCG-003, Desulfovibrio, Fibrobacter succinogenes, Ruminococcus albus, R. flavefaciens, Prevotella bryantii, P. ruminicola, and Treponema bryantii. Conclusion: These findings highlight AnLPMO's potential as a feed additive for improving rice straw utilization in ruminant production.

6.
Heliyon ; 10(9): e30371, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737245

ABSTRACT

Pregnant women infected with SARS-CoV-2 in early pregnancy may face an increased risk of miscarriage due to immune imbalance at the maternal-fetal interface. However, the molecular mechanisms underlying the crosstalk between COVID-19 infection and recurrent spontaneous abortion (RSA) remain poorly understood. This study aimed to elucidate the transcriptomic molecular dialog between COVID-19 and RSA. Based on bioinformatics analysis, 307 common differentially expressed genes were found between COVID-19 (GSE171110) and RSA (GSE165004). Common DEGs were mainly enriched in ribosome-related and cell cycle-related signaling pathways. Using degree algorithm, the top 10 hub genes (RPS27A, RPL5, RPS8, RPL4, RPS2, RPL30, RPL23A, RPL31, RPL26, RPL37A) were selected from the common DEGs based on their scores. The results of the qPCR were in general agreement with the results of the raw letter analysis. The top 10 candidate drugs were also selected based on P-values. In this study, we provide molecular markers, signaling pathways, and small molecule compounds that may associate COVID-19. These findings may increase the accurate diagnosis and treatment of COVID-19 patients.

7.
Front Bioeng Biotechnol ; 12: 1373419, 2024.
Article in English | MEDLINE | ID: mdl-38737538

ABSTRACT

Atopic dermatitis (AD) is a common inflammatory skin disease that significantly affects patients' quality of life. This study aimed to evaluate the therapeutic potential of cell-free fat extract (FE) in AD. In this study, the therapeutic effect of DNCB-induced AD mouse models was investigated. Dermatitis scores and transepidermal water loss (TEWL) were recorded to evaluate the severity of dermatitis. Histological analysis and cytokines measurement were conducted to assess the therapeutic effect. Additionally, the ability of FE to protect cells from ROS-induced damage and its ROS scavenging capacity both in vitro and in vivo were investigated. Furthermore, we performed Th1/2 cell differentiation with and without FE to elucidate the underlying therapeutic mechanism. FE reduced apoptosis and cell death of HaCat cells exposed to oxidative stress. Moreover, FE exhibited concentration-dependent antioxidant activity and scavenged ROS both in vitro and vivo. Treatment with FE alleviated AD symptoms in mice, as evidenced by improved TEWL, restored epidermis thickness, reduced mast cell infiltration, decreased DNA oxidative damage and lower inflammatory cytokines like IFN-γ, IL-4, and IL-13. FE also inhibited the differentiation of Th2 cells in vitro. Our findings indicate that FE regulates oxidative stress and mitigates Th2-mediated inflammation in atopic dermatitis by inhibiting Th2 cell differentiation, suggesting that FE has the potential as a future treatment option for AD.

8.
IDCases ; 36: e01953, 2024.
Article in English | MEDLINE | ID: mdl-38707650

ABSTRACT

One patient with rifampin-resistant tuberculosis underwent emergency left pneumonectomy and thoracic gauze packing for hemoptysis due to recurrent hemoptysis after transcatheter arterial embolization. Vital signs were maintained by mechanical ventilation and medication. Tracheotomy and anti-tuberculosis treatment were performed. After half a year of follow-up, the patient's condition was stable.

9.
Neurochem Res ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713437

ABSTRACT

Ischemic stroke presents a global health challenge, necessitating an in-depth comprehension of its pathophysiology and therapeutic strategies. While reperfusion therapy salvages brain tissue, it also triggers detrimental cerebral ischemia-reperfusion injury (CIRI). In our investigation, we observed the activation of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy in an oxygen-glucose deprivation/reoxygenation (OGD/R) model using HT22 cells (P < 0.05). This activation contributed to oxidative stress (P < 0.05), enhanced autophagy (P < 0.05) and cell death (P < 0.05) during CIRI. Silencing NCOA4 effectively mitigated OGD/R-induced damage (P < 0.05). These findings suggested that targeting NCOA4-mediated ferritinophagy held promise for preventing and treating CIRI. Subsequently, we substantiated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway effectively regulated the NCOA4-mediated ferritinophagy, by applying the cGAS inhibitor RU.521 and performing NCOA4 overexpression (P < 0.05). Suppressing the cGAS-STING pathway efficiently curtailed ferritinophagy (P < 0.05), oxidative stress (P < 0.05), and cell damage (P < 0.05) of CIRI, while NCOA4 overexpression could alleviate this effect (P < 0.05). Finally, we elucidated the specific molecular mechanism underlying the protective effect of the iron chelator deferoxamine (DFO) on CIRI. Our findings revealed that DFO alleviated hypoxia-reoxygenation injury in HT22 cells through inhibiting NCOA4-mediated ferritinophagy and reducing ferrous ion levels (P < 0.05). However, the protective effects of DFO were counteracted by cGAS overexpression (P < 0.05). In summary, our results indicated that the activation of the cGAS-STING pathway intensified cerebral damage during CIRI by inducing NCOA4-mediated ferritinophagy. Administering the iron chelator DFO effectively attenuated NCOA4-induced ferritinophagy, thereby alleviating CIRI. Nevertheless, the role of the cGAS-STING pathway in CIRI regulation likely involves intricate mechanisms, necessitating further validation in subsequent investigations.

10.
Food Funct ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743003

ABSTRACT

Multigrain reconstituted rice, as a nutritious and convenient staple, holds considerable promise for the food industry. Furthermore, highland barley, corn, and other coarse cereals are distinguished by their low glycemic index (GI), rendering them effective in mitigating postprandial blood glucose levels, thereby underscoring their beneficial physiological impact. This study investigated the impact of extrusion temperature on the physicochemical properties, edible quality, and digestibility of multigrain reconstituted rice. The morphology revealed that starch particles that are not fully gelatinized in multigrain reconstituted rice are observed at an extrusion temperature range of 60 °C-90 °C. As the extrusion temperature increased, the degree of gelatinization (DG) increased, while the contents of water, protein, total starch, and amylopectin decreased substantially. Concurrently, the relative crystallinity, orderliness of starch, and heat absorption enthalpy (ΔH) decreased significantly, and water absorption (WAI) and water solubility (WSI) increased markedly. Regarding edible quality, sensory evaluation displayed an initial increase followed by a decrease. In terms of digestibility, the estimated glycemic index (eGI) increased from 61.10 to 70.81, and the GI increased from 60.41 to 75.33. In addition, the DG was significantly correlated with both eGI (r = 0.886**) and GI (r = 0.947**). The results indicated that the ideal extrusion temperature for multigrain reconstituted rice was 90 °C. The findings underscored the pivotal role of optimal extrusion temperatures in the production of multigrain reconstituted rice, which features low GI and high nutritional quality.

11.
J Transl Med ; 22(1): 447, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741132

ABSTRACT

BACKGROUND: Retinal ischemia/reperfusion (RIR) is implicated in various forms of optic neuropathies, yet effective treatments are lacking. RIR leads to the death of retinal ganglion cells (RGCs) and subsequent vision loss, posing detrimental effects on both physical and mental health. Apigenin (API), derived from a wide range of sources, has been reported to exert protective effects against ischemia/reperfusion injuries in various organs, such as the brain, kidney, myocardium, and liver. In this study, we investigated the protective effect of API and its underlying mechanisms on RGC degeneration induced by retinal ischemia/reperfusion (RIR). METHODS: An in vivo model was induced by anterior chamber perfusion following intravitreal injection of API one day prior to the procedure. Meanwhile, an in vitro model was established through 1% oxygen and glucose deprivation. The neuroprotective effects of API were evaluated using H&E staining, spectral-domain optical coherence tomography (SD-OCT), Fluoro-Gold retrograde labeling, and Photopic negative response (PhNR). Furthermore, transmission electron microscopy (TEM) was employed to observe mitochondrial crista morphology and integrity. To elucidate the underlying mechanisms of API, the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, flow cytometry assay, western blot, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, JC-1 kit assay, dichlorofluorescein-diacetate (DCFH-DA) assay, as well as TMRE and Mito-tracker staining were conducted. RESULTS: API treatment protected retinal inner plexiform layer (IPL) and ganglion cell complex (GCC), and improved the function of retinal ganglion cells (RGCs). Additionally, API reduced RGC apoptosis and decreased lactate dehydrogenase (LDH) release by upregulating Bcl-2 and Bcl-xL expression, while downregulating Bax and cleaved caspase-3 expression. Furthermore, API increased mitochondrial membrane potential (MMP) and decreased extracellular reactive oxygen species (ROS) production. These effects were achieved by enhancing mitochondrial function, restoring mitochondrial cristae morphology and integrity, and regulating the expression of OPA1, MFN2, and DRP1, thereby regulating mitochondrial dynamics involving fusion and fission. CONCLUSION: API protects RGCs against RIR injury by modulating mitochondrial dynamics, promoting mitochondrial fusion and fission.


Subject(s)
Apigenin , Mitochondrial Dynamics , Neuroprotective Agents , Reperfusion Injury , Retinal Ganglion Cells , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Apigenin/pharmacology , Apigenin/therapeutic use , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mitochondrial Dynamics/drug effects , Male , Apoptosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Models, Biological , Mice, Inbred C57BL
12.
J Hazard Mater ; 472: 134466, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38718507

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia worldwide. Due to its uncertain pathogenesis, there is currently no treatment available for AD. Increasing evidences have linked cellular senescence to AD, although the mechanism triggering cellular senescence in AD requires further exploration. To investigate the involvement of cellular senescence in AD, we explored the effects of cadmium chloride (CdCl2) exposure, one of the potential environmental risk factors for AD, on neuron senescence in vivo and in vitro. ß-amyloid (Aß) and tubulin-associated protein (tau) pathologies were found to be enhanced by CdCl2 exposure in the in vitro models, while p53/p21/Rb cascade-related neuronal senescence pathways were activated. Conversely, the use of melatonin, a cellular senescence inhibitor, or a cadmium ion chelator suppressed CdCl2-induced neuron senescence, along with the Aß and tau pathologies. Mechanistically, CdCl2 exposure activated the suppressor enhancer Lin-12/Notch 1-like (SEL1L)/HMG-CoA reductase degradation 1 (HRD1)-regulated endoplasmic reticulum-associated degradation (ERAD), which enhanced the ubiquitin degradation of sigma-1 receptor (SigmaR1) by specifically recognizing its K142 site, resulting in the activation of the p53/p21/Rb pathway via the induction of Ca2+ dyshomeostasis and mitochondrial dysfunction. In the in vivo models, the administration of the SigmaR1 agonist ANAVEX2-73 rescues neurobehavioral inhibition and alleviates cellular senescence and AD-like pathology in the brain tissue of CdCl2-exposed mice. Consequently, the present study revealed a novel senescence-associated regulatory route for the SEL1L/HRD1/SigmaR1 axis that affects the pathological progression of CdCl2 exposure-associated AD. CdCl2 exposure activated SEL1L/HRD1-mediated ERAD and promoted the ubiquitinated degradation of SigmaR1, activating p53/p21/Rb pathway-regulated neuronal senescence. The results of the present study suggest that SigmaR1 may function as a neuroprotective biomarker of neuronal senescence, and pharmacological activation of SigmaR1 could be a promising intervention strategy for AD therapy.

14.
Heliyon ; 10(9): e30330, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726177

ABSTRACT

Background: Colon cancer (CC) stem cells can self-renew as well as expand, thereby promoting tumor progression and conferring resistance to chemotherapeutic agents. The acetyltransferase NAT10 mediates N4-acetylcytidine (ac4C) modification, which in turn drives tumorigenesis, metastasis, stemness properties maintenance, and cell fate decisions. Nonetheless, the specific involvement of ac4C modification mediated by NAT10 in regulating stemness and chemosensitivity in CC remains undetermined. Methods: The levels of NAT10 in normal colon and chemoresistant CC tissues were determined utilizing quantitative real-time polymerase chain reaction alongside immunohistochemistry. Assessing cancer cell stemness and chemosensitivity was conducted by various methods including spheroid and colony formation, western blotting, and flow cytometry. RNA-Seq was used to identify target genes, and RNA immunoprecipitation analysis was used to explore the potential mechanisms. Results: We observed NAT10 overexpression and increased ac4C modification levels in chemoresistant CC tissues. The in vivo and in vitro analysis findings suggested that NAT10 promoted CC cell stemness while suppressing their chemosensitivity. Conversely, Remodelin, a NAT10-specific inhibitor, enhanced CC cell chemosensitivity. Mechanistically, NAT10 increased the level of NANOGP8 ac4C modification and promoted NANOGP8 mRNA stability. Conclusions: NAT10 promotes the maintenance of stemness and chemoresistance in CC cells by augmenting the mRNA stability of NANOGP8. The inhibition of NAT10 via Remodelin improves chemotherapeutic efficacy and impedes CC progression.

15.
Ecotoxicol Environ Saf ; 278: 116432, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38728947

ABSTRACT

Cadmium (Cd) pollution is a serious global environmental problem, which requires a global concern and practical solutions. Microbial remediation has received widespread attention owing to advantages, such as environmental friendliness and soil amelioration. However, Cd toxicity also severely deteriorates the remediation performance of functional microorganisms. Analyzing the mechanism of bacterial resistance to Cd stress will be beneficial for the application of Cd remediation. In this study, the bacteria strain, up to 1400 mg/L Cd resistance, was employed and identified as Proteus mirabilis Ch8 (Ch8) through whole genome sequence analyses. The results indicated that the multiple pathways of immobilizing and detoxifying Cd maintained the growth of Ch8 under Cd stress, which also possessed high Cd extracellular adsorption. Firstly, the changes in surface morphology and functional groups of Ch8 cells were observed under different Cd conditions through SEM-EDS and FTIR analyses. Under 100 mg/L Cd, Ch8 cells exhibited aggregation and less flagella; the Cd biosorption of Ch8 was predominately by secreting exopolysaccharides (EPS) and no significant change of functional groups. Under 500 mg/L Cd, Ch8 were present irregular polymers on the cell surface, some cells with wrapping around; the Cd biosorption capacity exhibited outstanding effects (38.80 mg/g), which was mainly immobilizing Cd by secreting and interacting with EPS. Then, Ch8 also significantly enhanced the antioxidant enzyme activity and the antioxidant substance content under different Cd conditions. The activities of SOD and CAT, GSH content of Ch8 under 500 mg/L Cd were significantly increased by 245.47%, 179.52%, and 241.81%, compared to normal condition. Additionally, Ch8 significantly induced the expression of Acr A and Tol C (the resistance-nodulation-division (RND) efflux pump), and some antioxidant genes (SodB, SodC, and Tpx) to reduce Cd damage. In particular, the markedly higher expression levels of SodB under Cd stress. The mechanism of Ch8 lays a foundation for its application in solving soil remediation.

16.
Metabolism ; : 155933, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729601

ABSTRACT

AIMS/HYPOTHESIS: cGAS (cyclic GMP-AMP synthase) has been implicated in various cellular processes, but its role in ß-cell proliferation and diabetes is not fully understood. This study investigates the impact of cGAS on ß-cell proliferation, particularly in the context of diabetes. METHODS: Utilizing mouse models, including cGAS and STING (stimulator of interferon genes) knockout mice, we explored the role of cGAS in ß-cell function. This involved ß-cell-specific cGAS knockout (cGASßKO) mice, created by breeding cGAS floxed mice with transgenic mice expressing Cre recombinase under the insulin II promoter. We analyzed cGAS expression in diabetic mouse models, evaluated the effects of cGAS deficiency on glucose tolerance, and investigated the molecular mechanisms underlying these effects through RNA sequencing. RESULTS: cGAS expression is upregulated in the islets of diabetic mice and by high glucose treatment in MIN6 cells. Both global cGAS deficiency and ß-cell-specific cGAS knockout mice lead to improved glucose tolerance by promoting ß-cell mass. Interestingly, STING knockout did not affect pancreatic ß-cell mass, suggesting a STING-independent mechanism for cGAS's role in ß-cells. Further analyses revealed that cGAS- but not STING-deficiency leads to reduced expression of CEBPß, a known suppressor of ß-cell proliferation, concurrently with increased ß-cell proliferation. Moreover, overexpression of CEBPß reverses the upregulation of Cyclin D1 and D2 induced by cGAS deficiency, thereby regulating ß-cell proliferation. These results confirm that cGAS regulation of ß-cell proliferation via a CEBPß-dependent but STING-independent mechanism. CONCLUSIONS/INTERPRETATION: Our findings highlight the pivotal role of cGAS in promoting ß-cell proliferation and maintaining glucose homeostasis, potentially by regulating CEBPß expression in a STING-independent manner. This study uncovers the significance of cGAS in controlling ß-cell mass and identifies a potential therapeutic target for enhancing ß-cell proliferation in the treatment of diabetes.

18.
Exp Neurol ; 377: 114807, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704082

ABSTRACT

Repeated sevoflurane exposure in neonatal mice can leads to neuronal apoptosis and mitochondrial dysfunction. The mitochondria are responsible for energy production to maintain homeostasis in the central nervous system. The mitochondria-associated endoplasmic reticulum membrane (MAM) is located between the mitochondria and endoplasmic reticulum (ER), and it is critical for mitochondrial function and cell survival. MAM malfunction contributes to neurodegeneration, however, whether it is involved in sevoflurane-induced neurotoxicity remains unknown. Our study demonstrated that repeated sevoflurane exposure induced mitochondrial dysfunction and dampened the MAM structure. The upregulated ER-mitochondria tethering enhanced Ca2+ transition from the cytosol to the mitochondria. Overload of mitochondrial Ca2+ contributed to opening of the mitochondrial permeability transition pore (mPTP), which caused neuronal apoptosis. Mitofusin 2(Mfn2), a key regulator of ER-mitochondria contacts, was found to be suppressed after repeated sevoflurane exposure, while restoration of Mfn2 expression alleviated cognitive dysfunction due to repeated sevoflurane exposure in the adult mice. These evidences suggest that sevoflurane-induced MAM malfunction is vulnerable to Mfn2 suppression, and the enhanced ER-mitochondria contacts promotes mitochondrial Ca2+ overload, contributing to mPTP opening and neuronal apoptosis. This paper sheds light on a novel mechanism of sevoflurane-induced neurotoxicity. Furthermore, targeting Mfn2-mediated regulation of the MAM structure and mitochondrial function may provide a therapeutic advantage in sevoflurane-induced neurodegeneration.

19.
BMC Musculoskelet Disord ; 25(1): 394, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769526

ABSTRACT

BACKGROUND: Early identification of patients at risk of osteopenia is an essential step in reducing the population at risk for fractures. We aimed to develop and validate a prediction model for osteopenia in Chinese middle-aged and elderly men that provides individualized risk estimates. METHODS: In this prospective cohort study, 1109 patients who attend regular physical examinations in the Second Medical Centre of Chinese PLA General Hospital were enrolled from 2015.03 to 2015.09. The baseline risk factors included dietary habits, exercise habits, medical histories and medication records. Osteopenia during follow-up were collected from Electronic Health Records (EHRs) and telephone interviews. Internal validation was conducted using bootstrapping to correct the optimism. The independent sample T-test analysis, Mann_Whitney U test, Chi-Square Test and multivariable Cox regression analysis were utilized to identify predictive factors for osteopenia in Chinese middle-aged and elderly men. A nomogram based on the seven variables was built for clinical use. Concordance index (C-index), receiver operating characteristic curve (ROC), decision curve analysis (DCA) and calibration curve were used to evaluate the efficiency of the nomogram. RESULTS: The risk factors included in the prediction model were bone mineral density at left femoral neck (LNBMD), hemoglobin (Hb), serum albumin (ALB), postprandial blood glucose (PBG), fatty liver disease (FLD), smoking and tea consumption. The C-index for the risk nomogram was 0.773 in the prediction model, which presented good refinement. The AUC of the risk nomogram at different time points ranged from 0.785 to 0.817, exhibiting good predictive ability and performance. In addition, the DCA showed that the nomogram had a good clinical application value. The nomogram calibration curve indicated that the prediction model was consistent. CONCLUSIONS: Our study provides a novel nomogram and a web calculator that can effectively predict the 7-year incidence risk of osteopenia in Chinese middle-aged and elderly men. It is convenient for clinicians to prevent fragility fractures in the male population.


Subject(s)
Bone Diseases, Metabolic , Nomograms , Humans , Male , Prospective Studies , Middle Aged , Bone Diseases, Metabolic/epidemiology , Bone Diseases, Metabolic/diagnosis , Aged , Risk Factors , China/epidemiology , Risk Assessment , Bone Density , Predictive Value of Tests , Cohort Studies , East Asian People
20.
Cell Rep Med ; 5(5): 101573, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776874

ABSTRACT

Epstein-Barr virus (EBV) is linked to various malignancies and autoimmune diseases, posing a significant global health challenge due to the lack of specific treatments or vaccines. Despite its crucial role in EBV infection in B cells, the mechanisms of the glycoprotein gp42 remain elusive. In this study, we construct an antibody phage library from 100 EBV-positive individuals, leading to the identification of two human monoclonal antibodies, 2B7 and 2C1. These antibodies effectively neutralize EBV infection in vitro and in vivo while preserving gp42's interaction with the human leukocyte antigen class II (HLA-II) receptor. Structural analysis unveils their distinct binding epitopes on gp42, different from the HLA-II binding site. Furthermore, both 2B7 and 2C1 demonstrate potent neutralization of EBV infection in HLA-II-positive epithelial cells, expanding our understanding of gp42's role. Overall, this study introduces two human anti-gp42 antibodies with potential implications for developing EBV vaccines targeting gp42 epitopes, addressing a critical gap in EBV research.


Subject(s)
Antibodies, Monoclonal , Epitopes , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Herpesvirus 4, Human/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Antibodies, Monoclonal/immunology , Epitopes/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Mice , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Viral Proteins/immunology , B-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...