Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Cancer Res ; 81(14): 3876-3889, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33975880

ABSTRACT

Breast cancer diagnosed within 10 years following childbirth is defined as postpartum breast cancer (PPBC) and is highly metastatic. Interactions between immune cells and other stromal cells within the involuting mammary gland are fundamental in facilitating an aggressive tumor phenotype. The MNK1/2-eIF4E axis promotes translation of prometastatic mRNAs in tumor cells, but its role in modulating the function of nontumor cells in the PPBC microenvironment has not been explored. Here, we used a combination of in vivo PPBC models and in vitro assays to study the effects of inactivation of the MNK1/2-eIF4E axis on the protumor function of select cells of the tumor microenvironment. PPBC mice deficient for phospho-eIF4E (eIF4ES209A) were protected against lung metastasis and exhibited differences in the tumor and lung immune microenvironment compared with wild-type mice. Moreover, the expression of fibroblast-derived IL33, an alarmin known to induce invasion, was repressed upon MNK1/2-eIF4E axis inhibition. Imaging mass cytometry on PPBC and non-PPBC patient samples indicated that human PPBC contains phospho-eIF4E high-expressing tumor cells and CD8+ T cells displaying markers of an activated dysfunctional phenotype. Finally, inhibition of MNK1/2 combined with anti-PD-1 therapy blocked lung metastasis of PPBC. These findings implicate the involvement of the MNK1/2-eIF4E axis during PPBC metastasis and suggest a promising immunomodulatory route to enhance the efficacy of immunotherapy by blocking phospho-eIF4E. SIGNIFICANCE: This study investigates the MNK1/2-eIF4E signaling axis in tumor and stromal cells in metastatic breast cancer and reveals that MNK1/2 inhibition suppresses metastasis and sensitizes tumors to anti-PD-1 immunotherapy.


Subject(s)
Breast Neoplasms/drug therapy , Eukaryotic Initiation Factor-4E/therapeutic use , Immunosuppression Therapy/methods , Animals , Disease Models, Animal , Eukaryotic Initiation Factor-4E/pharmacology , Female , Humans , Mice , Neoplasm Metastasis , Postpartum Period
3.
Cancer Res ; 79(7): 1646-1657, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30659022

ABSTRACT

The mechanisms by which breast cancers progress from relatively indolent ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) are not well understood. However, this process is critical to the acquisition of metastatic potential. MAPK-interacting serine/threonine-protein kinase 1 (MNK1) signaling can promote cell invasion. NODAL, a morphogen essential for embryogenic patterning, is often reexpressed in breast cancer. Here we describe a MNK1/NODAL signaling axis that promotes DCIS progression to IDC. We generated MNK1 knockout (KO) or constitutively active MNK1 (caMNK1)-expressing human MCF-10A-derived DCIS cell lines, which were orthotopically injected into the mammary glands of mice. Loss of MNK1 repressed NODAL expression, inhibited DCIS to IDC conversion, and decreased tumor relapse and metastasis. Conversely, caMNK1 induced NODAL expression and promoted IDC. The MNK1/NODAL axis promoted cancer stem cell properties and invasion in vitro. The MNK1/2 inhibitor SEL201 blocked DCIS progression to invasive disease in vivo. In clinical samples, IDC and DCIS with microinvasion expressed higher levels of phospho-MNK1 and NODAL versus low-grade (invasion-free) DCIS. Cumulatively, our data support further development of MNK1 inhibitors as therapeutics for preventing invasive disease. SIGNIFICANCE: These findings provide new mechanistic insight into progression of ductal carcinoma and support clinical application of MNK1 inhibitors to delay progression of indolent ductal carcinoma in situ to invasive ductal carcinoma.


Subject(s)
Breast Carcinoma In Situ/pathology , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Nodal Protein/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Animals , Breast Carcinoma In Situ/metabolism , Breast Neoplasms/metabolism , CRISPR-Cas Systems , Carcinoma, Ductal, Breast/metabolism , Cell Line, Tumor , Cell Proliferation , Disease Progression , Female , Heterografts , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Nude , Protein Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...