Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(17): e2321170121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38630724

ABSTRACT

Global control of infectious diseases depends on the continuous development and deployment of diverse vaccination strategies. Currently available live-attenuated and killed virus vaccines typically take a week or longer to activate specific protection by the adaptive immunity. The mosquito-transmitted Nodamura virus (NoV) is attenuated in mice by mutations that prevent expression of the B2 viral suppressor of RNA interference (VSR) and consequently, drastically enhance in vivo production of the virus-targeting small-interfering RNAs. We reported recently that 2 d after immunization with live-attenuated VSR-disabled NoV (NoVΔB2), neonatal mice become fully protected against lethal NoV challenge and develop no detectable infection. Using Rag1-/- mice that produce no mature B and T lymphocytes as a model, here we examined the hypothesis that adaptive immunity is dispensable for the RNAi-based protective immunity activated by NoVΔB2 immunization. We show that immunization of both neonatal and adult Rag1-/- mice with live but not killed NoVΔB2 induces full protection against NoV challenge at 2 or 14 d postimmunization. Moreover, NoVΔB2-induced protective antiviral immunity is virus-specific and remains effective in adult Rag1-/- mice 42 and 90 d after a single-shot immunization. We conclude that immunization with the live-attenuated VSR-disabled RNA virus vaccine activates rapid and long-lasting protective immunity against lethal challenges by a distinct mechanism independent of the adaptive immunity mediated by B and T cells. Future studies are warranted to determine whether additional animal and human viruses attenuated by VSR inactivation induce similar protective immunity in healthy and adaptive immunity-compromised individuals.


Subject(s)
Influenza Vaccines , Viral Vaccines , Viruses , Animals , Humans , Mice , T-Lymphocytes , RNA Interference , Vaccines, Attenuated , Homeodomain Proteins , Antibodies, Viral
2.
Microbiol Mol Biol Rev ; 87(2): e0003522, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37052496

ABSTRACT

Immune recognition of viral genome-derived double-stranded RNA (dsRNA) molecules and their subsequent processing into small interfering RNAs (siRNAs) in plants, invertebrates, and mammals trigger specific antiviral immunity known as antiviral RNA interference (RNAi). Immune sensing of viral dsRNA is sequence-independent, and most regions of viral RNAs are targeted by virus-derived siRNAs which extensively overlap in sequence. Thus, the high mutation rates of viruses do not drive immune escape from antiviral RNAi, in contrast to other mechanisms involving specific virus recognition by host immune proteins such as antibodies and resistance (R) proteins in mammals and plants, respectively. Instead, viruses actively suppress antiviral RNAi at various key steps with a group of proteins known as viral suppressors of RNAi (VSRs). Some VSRs are so effective in virus counter-defense that potent inhibition of virus infection by antiviral RNAi is undetectable unless the cognate VSR is rendered nonexpressing or nonfunctional. Since viral proteins are often multifunctional, resistance phenotypes of antiviral RNAi are accurately defined by those infection defects of VSR-deletion mutant viruses that are efficiently rescued by host deficiency in antiviral RNAi. Here, we review and discuss in vivo infection defects of VSR-deficient RNA and DNA viruses resulting from the actions of host antiviral RNAi in model systems.


Subject(s)
Antiviral Agents , RNA Viruses , Animals , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , DNA Viruses/genetics , DNA Viruses/metabolism , RNA Viruses/genetics , Mammals/genetics , Mammals/metabolism
3.
Trends Biochem Sci ; 47(11): 978-988, 2022 11.
Article in English | MEDLINE | ID: mdl-35618579

ABSTRACT

The antiviral defense directed by the RNAi pathway employs distinct specificity and effector mechanisms compared with other immune responses. The specificity of antiviral RNAi is programmed by siRNAs processed from virus-derived double-stranded RNA by Dicer endonuclease. Argonaute-containing RNA-induced silencing complex loaded with the viral siRNAs acts as the effector to mediate specific virus clearance by RNAi. Recent studies have provided evidence for the production and antiviral function of virus-derived siRNAs in both undifferentiated and differentiated mammalian cells infected with a range of RNA viruses when the cognate virus-encoded suppressor of RNAi (VSR) is rendered nonfunctional. In this review, we discuss the function, mechanism, and evolutionary origin of the validated mammalian VSRs and cell culture assays for their identification.


Subject(s)
Argonaute Proteins , RNA, Double-Stranded , Animals , Antiviral Agents , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Mammals/genetics , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Viral/genetics
4.
Nat Commun ; 13(1): 2994, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637208

ABSTRACT

Virus-host coevolution often drives virus immune escape. However, it remains unknown whether natural variations of plant virus resistance are enriched in genes of RNA interference (RNAi) pathway known to confer essential antiviral defense in plants. Here, we report two genome-wide association study screens to interrogate natural variation among wild-collected Arabidopsis thaliana accessions in quantitative resistance to the endemic cucumber mosaic virus (CMV). We demonstrate that the highest-ranked gene significantly associated with resistance from both screens acts to regulate antiviral RNAi in ecotype Columbia-0. One gene, corresponding to Reduced Dormancy 5 (RDO5), enhances resistance by promoting amplification of the virus-derived small interfering RNAs (vsiRNAs). Interestingly, the second gene, designated Antiviral RNAi Regulator 1 (VIR1), dampens antiviral RNAi so its genetic inactivation by CRISPR/Cas9 editing enhances both vsiRNA production and CMV resistance. Our findings identify positive and negative regulators of the antiviral RNAi defense that may play important roles in virus-host coevolution.


Subject(s)
Arabidopsis , Cucumovirus , Cytomegalovirus Infections , Antiviral Agents , Cucumovirus/genetics , Cytomegalovirus Infections/genetics , Genome-Wide Association Study , Humans , Plant Diseases , RNA Interference
5.
PLoS Pathog ; 17(8): e1009790, 2021 08.
Article in English | MEDLINE | ID: mdl-34343211

ABSTRACT

The interferon-regulated antiviral responses are essential for the induction of both innate and adaptive immunity in mammals. Production of virus-derived small-interfering RNAs (vsiRNAs) to restrict virus infection by RNA interference (RNAi) is a recently identified mammalian immune response to several RNA viruses, which cause important human diseases such as influenza and Zika virus. However, little is known about Dicer processing of viral double-stranded RNA replicative intermediates (dsRNA-vRIs) in mammalian somatic cells. Here we show that infected somatic cells produced more influenza vsiRNAs than cellular microRNAs when both were produced by human Dicer expressed de novo, indicating that dsRNA-vRIs are not poor Dicer substrates as previously proposed according to in vitro Dicer processing of synthetic long dsRNA. We report the first evidence both for canonical vsiRNA production during wild-type Nodamura virus infection and direct vsiRNA sequestration by its RNAi suppressor protein B2 in two strains of suckling mice. Moreover, Sindbis virus (SINV) accumulation in vivo was decreased by prior production of SINV-targeting vsiRNAs triggered by infection and increased by heterologous expression of B2 in cis from SINV genome, indicating an antiviral function for the induced RNAi response. These findings reveal that unlike artificial long dsRNA, dsRNA-vRIs made during authentic infection of mature somatic cells are efficiently processed by Dicer into vsiRNAs to direct antiviral RNAi. Interestingly, Dicer processing of dsRNA-vRIs into vsiRNAs was inhibited by LGP2 (laboratory of genetics and physiology 2), which was encoded by an interferon-stimulated gene (ISG) shown recently to inhibit Dicer processing of artificial long dsRNA in cell culture. Our work thus further suggests negative modulation of antiviral RNAi by a known ISG from the interferon response.


Subject(s)
DEAD-box RNA Helicases/metabolism , RNA Helicases/metabolism , RNA Viruses/physiology , RNA, Double-Stranded/genetics , RNA, Small Interfering/genetics , Ribonuclease III/metabolism , Virus Diseases/prevention & control , Virus Replication , Animals , Antiviral Agents/metabolism , DEAD-box RNA Helicases/genetics , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , RNA Helicases/genetics , Ribonuclease III/genetics , Virus Diseases/genetics
6.
mBio ; 11(4)2020 08 04.
Article in English | MEDLINE | ID: mdl-32753500

ABSTRACT

Distinct mammalian RNA viruses trigger Dicer-mediated production of virus-derived small-interfering RNAs (vsiRNA) and encode unrelated proteins to suppress vsiRNA biogenesis. However, the mechanism and function of the mammalian RNA interference (RNAi) response are poorly understood. Here, we characterized antiviral RNAi in a mouse model of infection with Nodamura virus (NoV), a mosquito-transmissible positive-strand RNA virus encoding a known double-stranded RNA (dsRNA)-binding viral suppressor of RNAi (VSR), the B2 protein. We show that inhibition of NoV RNA replication by antiviral RNAi in mouse embryonic fibroblasts (MEFs) requires Dicer-dependent vsiRNA biogenesis and Argonaute-2 slicer activity. We found that VSR-B2 of NoV enhances viral RNA replication in wild-type but not RNAi-defective MEFs such as Argonaute-2 catalytic-dead MEFs and Dicer or Argonaute-2 knockout MEFs, indicating that VSR-B2 acts mainly by suppressing antiviral RNAi in the differentiated murine cells. Consistently, VSR-B2 expression in MEFs has no detectable effect on the induction of interferon-stimulated genes or the activation of global RNA cleavages by RNase L. Moreover, we demonstrate that NoV infection of adult mice induces production of abundant vsiRNA active to guide RNA slicing by Argonaute-2. Notably, VSR-B2 suppresses the biogenesis of both vsiRNA and the slicing-competent vsiRNA-Argonaute-2 complex without detectable inhibition of Argonaute-2 slicing guided by endogenous microRNA, which dramatically enhances viral load and promotes lethal NoV infection in adult mice either intact or defective in the signaling by type I, II, and III interferons. Together, our findings suggest that the mouse RNAi response confers essential protective antiviral immunity in both the presence and absence of the interferon response.IMPORTANCE Innate immune sensing of viral nucleic acids in mammals triggers potent antiviral responses regulated by interferons known to antagonize the induction of RNA interference (RNAi) by synthetic long double-stranded RNA (dsRNA). Here, we show that Nodamura virus (NoV) infection in adult mice activates processing of the viral dsRNA replicative intermediates into small interfering RNAs (siRNAs) active to guide RNA slicing by Argonaute-2. Genetic studies demonstrate that NoV RNA replication in mouse embryonic fibroblasts is inhibited by the RNAi pathway and enhanced by the B2 viral RNAi suppressor only in RNAi-competent cells. When B2 is rendered nonexpressing or nonfunctional, the resulting mutant viruses become nonpathogenic and are cleared in adult mice either intact or defective in the signaling by type I, II, and III interferons. Our findings suggest that mouse antiviral RNAi is active and necessary for the in vivo defense against viral infection in both the presence and absence of the interferon response.


Subject(s)
Nodaviridae/genetics , RNA Interference , RNA, Double-Stranded/genetics , RNA, Small Interfering/genetics , Virus Replication , Animals , Argonaute Proteins/genetics , Cell Line , Cells, Cultured , DEAD-box RNA Helicases/genetics , Female , Fibroblasts/immunology , Fibroblasts/virology , Male , Mice , Mice, Inbred C57BL , Nodaviridae/immunology , RNA Virus Infections/virology , Ribonuclease III/genetics
7.
Methods Mol Biol ; 2028: 215-229, 2019.
Article in English | MEDLINE | ID: mdl-31228117

ABSTRACT

RNA interference (RNAi) acts as a natural defense mechanism against virus infection in plants and animals. Much is known about the antiviral function of the core RNAi pathway components identified mostly by genetic screens based on specific RNAi of cellular mRNAs. Here we describe a sensitized genetic screening system for the identification of novel components and regulators in the antiviral RNAi pathway established in the model plant species Arabidopsis thaliana. Our genetic screen identifies antiviral RNAi (avi)-defective Arabidopsis mutants that develop visible disease symptoms after infection with CMV-∆2b, a Cucumber mosaic virus mutant deficient in the expression of its viral suppressor of RNAi. Loss of RNAi suppression renders CMV-∆2b highly susceptible to antiviral RNAi so that it replicates to high levels and induces disease development only in avi mutants. This chapter provides the methods for the propagation of CMV-∆2b, preparation of the mutant plants for virus inoculation, identification and characterization of avi mutants, and cloning of the genes responsible for the mutant phenotype by either the genetic linkage to T-DNA insertion or a mapping-by-sequencing approach.


Subject(s)
Gene Expression Regulation, Plant , Genetic Testing , Host-Pathogen Interactions/genetics , Plant Diseases/genetics , Plant Diseases/virology , RNA Interference , Alleles , Arabidopsis/genetics , Arabidopsis/virology , Genotype , Host-Pathogen Interactions/immunology , Immunity, Innate , Phenotype , Plant Diseases/immunology , RNA, Small Interfering/genetics
8.
Curr Opin Immunol ; 54: 109-114, 2018 10.
Article in English | MEDLINE | ID: mdl-30015086

ABSTRACT

Infection of plants and insects with RNA and DNA viruses triggers Dicer-dependent production of virus-derived small interfering RNAs (vsiRNAs), which subsequently guide specific virus clearance by RNA interference (RNAi). Consistent with a major antiviral function of RNAi, productive virus infection in these eukaryotic hosts depends on the expression of virus-encoded suppressors of RNAi (VSRs). The eukaryotic RNAi pathway is highly conserved, particularly between insects and mammals. This review will discuss key recent findings that indicate a natural antiviral function of the RNAi pathway in mammalian cells. We will summarize the properties of the characterized mammalian vsiRNAs and VSRs and highlight important questions remaining to be addressed on the function and mechanism of mammalian antiviral RNAi.


Subject(s)
Mammals/genetics , Mammals/virology , Protective Agents , RNA Interference/physiology , RNA, Viral/genetics , Virus Diseases/genetics , Virus Diseases/prevention & control , Viruses/genetics , Animals , Humans , Virus Diseases/virology , Viruses/immunology
9.
Plant Physiol ; 176(2): 1587-1597, 2018 02.
Article in English | MEDLINE | ID: mdl-29184028

ABSTRACT

Small interfering RNAs (siRNAs) are processed from virus-specific dsRNA to direct antiviral RNA interference (RNAi) in diverse eukaryotic hosts. We have recently performed a sensitized genetic screen in Arabidopsis (Arabidopsis thaliana) and identified two related phospholipid flippases required for antiviral RNAi and the amplification of virus-derived siRNAs by plant RNA-dependent RNA polymerase1 (RDR1) and RDR6. Here we report the identification and cloning of ANTIVIRAL RNAI-DEFECTIVE2 (AVI2) from the same genetic screen. AVI2 encodes a multispan transmembrane protein broadly conserved in plants and animals with two homologous human proteins known as magnesium transporters. We show that avi2 mutant plants display no developmental defects and develop severe disease symptoms after infection with a mutant Cucumber mosaic virus (CMV) defective in RNAi suppression. AVI2 is induced by CMV infection, particularly in veins, and is required for antiviral RNAi and RDR6-dependent biogenesis of viral siRNAs. AVI2 is also necessary for Dicer-like2-mediated amplification of 22-nucleotide viral siRNAs induced in dcl4 mutant plants by infection, but dispensable for RDR6-dependent biogenesis of endogenous transacting siRNAs. Further genetic studies illustrate that AVI2 plays a partially redundant role with AVI2H, the most closely related member in the AVI2 gene family, in RDR1-dependent biogenesis of viral siRNAs and the endogenous virus-activated siRNAs (vasi-RNAs). Interestingly, we discovered a specific genetic interaction of AVI2 with AVI1 flippase that is critical for plant development. We propose that AVI1 and AVI2 participate in the virus-induced formation of the RDR1/RDR6-specific, membrane-bound RNA synthesis compartment, essential for the biogenesis of highly abundant viral siRNAs and vasi-RNAs.


Subject(s)
Adenosine Triphosphatases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Cucumovirus/physiology , Membrane Proteins/metabolism , Phospholipid Transfer Proteins/metabolism , Plant Diseases/virology , RNA, Small Interfering/genetics , Adenosine Triphosphatases/genetics , Arabidopsis/virology , Arabidopsis Proteins/genetics , Cucumovirus/genetics , Membrane Proteins/genetics , Mutation , Phospholipid Transfer Proteins/genetics , RNA Interference , RNA, Plant/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Up-Regulation
10.
mBio ; 8(2)2017 03 21.
Article in English | MEDLINE | ID: mdl-28325765

ABSTRACT

Dicer enzymes process virus-specific double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) to initiate specific antiviral defense by related RNA interference (RNAi) pathways in plants, insects, nematodes, and mammals. Antiviral RNAi in Caenorhabditis elegans requires Dicer-related helicase 1 (DRH-1), not found in plants and insects but highly homologous to mammalian retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), intracellular viral RNA sensors that trigger innate immunity against RNA virus infection. However, it remains unclear if DRH-1 acts analogously to initiate antiviral RNAi in C. elegans Here, we performed a forward genetic screen to characterize antiviral RNAi in C. elegans Using a mapping-by-sequencing strategy, we uncovered four loss-of-function alleles of drh-1, three of which caused mutations in the helicase and C-terminal domains conserved in RLRs. Deep sequencing of small RNAs revealed an abundant population of Dicer-dependent virus-derived small interfering RNAs (vsiRNAs) in drh-1 single and double mutant animals after infection with Orsay virus, a positive-strand RNA virus. These findings provide further genetic evidence for the antiviral function of DRH-1 and illustrate that DRH-1 is not essential for the sensing and Dicer-mediated processing of the viral dsRNA replicative intermediates. Interestingly, vsiRNAs produced by drh-1 mutants were mapped overwhelmingly to the terminal regions of the viral genomic RNAs, in contrast to random distribution of vsiRNA hot spots when DRH-1 is functional. As RIG-I translocates on long dsRNA and DRH-1 exists in a complex with Dicer, we propose that DRH-1 facilitates the biogenesis of vsiRNAs in nematodes by catalyzing translocation of the Dicer complex on the viral long dsRNA precursors.IMPORTANCE The helicase and C-terminal domains of mammalian RLRs sense intracellular viral RNAs to initiate the interferon-regulated innate immunity against RNA virus infection. Both of the domains from human RIG-I can substitute for the corresponding domains of DRH-1 to mediate antiviral RNAi in C. elegans, suggesting an analogous role for DRH-1 as an intracellular dsRNA sensor to initiate antiviral RNAi. Here, we developed a forward genetic screen for the identification of host factors required for antiviral RNAi in C. elegans Characterization of four distinct drh-1 mutants obtained from the screen revealed that DRH-1 did not function to initiate antiviral RNAi. We show that DRH-1 acted in a downstream step to enhance Dicer-dependent biogenesis of viral siRNAs in C. elegans As mammals produce Dicer-dependent viral siRNAs to target RNA viruses, our findings suggest a possible role for mammalian RLRs and interferon signaling in the biogenesis of viral siRNAs.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/immunology , DEAD-box RNA Helicases/metabolism , RNA Interference , RNA Viruses/immunology , RNA, Small Interfering/metabolism , Animals , Genetic Testing
11.
Cell Res ; 27(3): 402-415, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28059067

ABSTRACT

Some plant and animal pathogens can manipulate their hosts to cause them to release odors that are attractive to the pathogens' arthropod vectors. However, the molecular mechanism underlying this process is largely unexplored, and the specific effectors the pathogens employ as well as the pathways within the hosts they target are currently unknown. Here we reveal that the aphid-borne cucumber mosaic virus (CMV) employs its 2b protein, a well-characterized viral suppressor of host RNA interference (VSR), to target the host's jasmonate (JA) hormone pathway, thus acting as a viral inducer of host attractiveness to insect vectors (VIA). 2b inhibits JA signaling by directly interacting with and repressing JA-induced degradation of host jasmonate ZIM-domain proteins, instead of using its VSR activity. Our findings identify a previously defined VSR protein as a VIA and uncover a molecular mechanism CMV uses to manipulate host's attractiveness to insect vectors by targeting host hormone signaling.


Subject(s)
Arabidopsis/parasitology , Insect Vectors/physiology , Plant Growth Regulators/metabolism , Signal Transduction , Viral Proteins/metabolism , Animals , Aphids/virology , Arabidopsis/genetics , Arabidopsis/virology , Cyclopentanes/pharmacology , Host-Parasite Interactions/drug effects , Oxylipins/pharmacology , Protein Binding/drug effects , Proteolysis/drug effects , RNA Interference
12.
Nat Microbiol ; 2: 16250, 2016 Dec 05.
Article in English | MEDLINE | ID: mdl-27918527

ABSTRACT

Influenza A virus (IAV) causes annual epidemics and occasional pandemics, and is one of the best-characterized human RNA viral pathogens1. However, a physiologically relevant role for the RNA interference (RNAi) suppressor activity of the IAV non-structural protein 1 (NS1), reported over a decade ago2, remains unknown3. Plant and insect viruses have evolved diverse virulence proteins to suppress RNAi as their hosts produce virus-derived small interfering RNAs (siRNAs) that direct specific antiviral defence4-7 by an RNAi mechanism dependent on the slicing activity of Argonaute proteins (AGOs)8,9. Recent studies have documented induction and suppression of antiviral RNAi in mouse embryonic stem cells and suckling mice10,11. However, it is still under debate whether infection by IAV or any other RNA virus that infects humans induces and/or suppresses antiviral RNAi in mature mammalian somatic cells12-21. Here, we demonstrate that mature human somatic cells produce abundant virus-derived siRNAs co-immunoprecipitated with AGOs in response to IAV infection. We show that the biogenesis of viral siRNAs from IAV double-stranded RNA (dsRNA) precursors in infected cells is mediated by wild-type human Dicer and potently suppressed by both NS1 of IAV as well as virion protein 35 (VP35) of Ebola and Marburg filoviruses. We further demonstrate that the slicing catalytic activity of AGO2 inhibits IAV and other RNA viruses in mature mammalian cells, in an interferon-independent fashion. Altogether, our work shows that IAV infection induces and suppresses antiviral RNAi in differentiated mammalian somatic cells.


Subject(s)
Host-Pathogen Interactions , Influenza A virus/immunology , RNA Interference , Animals , Argonaute Proteins/metabolism , Cell Line , Chromatin Immunoprecipitation , Humans , Protein Binding , RNA, Viral/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors
13.
Oncol Rep ; 33(4): 1915-21, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25683065

ABSTRACT

Pancreatic cancer is one of the human gastrointestinal malignancies with a high mortality and poor prognosis. Approximately eighty percent of patients are diagnosed with unresectable or metastatic disease. Thus, development of novel chemicals in the treatment of pancreatic cancer is imperative. This study aimed to investigate the anticancer effects of N,N'-di-(m-methylphenyi)-3,6-dimethyl-1,4-dihydro-1,2,4,5-tetrazine-1,4-dicarboamide (ZGDHu-1), a new tetrazine derivative, on the PANC-1 pancreatic cancer cell line and clarify the underlying molecular mechanism. Using an MTT assay, we found that ZGDHu-1 significantly suppressed the proliferation of PANC-1 cells in a time- and dose-dependent manner. Moreover, according to the morphological and flow cytometric analysis, the results indicated that ZGDHu-1 induced PANC-1 cell apoptosis and G2/M cell cycle arrest in a dose-dependent manner. In the western blot analysis, expression of the pro-apoptotic Bax gene was upregulated while the anti-apoptotic Bcl-2 gene was downregulated following treatment with ZGDHu-1. ZGDHu-1 also activated pro-caspase-3 and PARP and increased the expression of NF-κB inhibitor IκB. Furthermore, the expression levels of G2/M regulatory molecules such as cyclin B1 and cdc2 were decreased while that of Chk1 was increased. These results suggested that ZGDHu-1 suppressed the proliferation of pancreatic cancer cells, rendering it a potential therapeutic drug for the treatment of pancreatic cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma/pathology , G2 Phase Cell Cycle Checkpoints/drug effects , Heterocyclic Compounds, 1-Ring/pharmacology , Pancreatic Neoplasms/pathology , Antineoplastic Agents/administration & dosage , Apoptosis Regulatory Proteins/biosynthesis , Apoptosis Regulatory Proteins/genetics , Caspase 3/drug effects , Cell Cycle Proteins/biosynthesis , Cell Cycle Proteins/genetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Activation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Heterocyclic Compounds, 1-Ring/administration & dosage , Humans , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics
14.
J Virol ; 86(21): 11645-53, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22896621

ABSTRACT

Small interfering RNAs (siRNAs) processed from viral replication intermediates by RNase III-like enzyme Dicer guide sequence-specific antiviral silencing in fungi, plants, and invertebrates. In plants, virus-derived siRNAs (viRNAs) can target and silence cellular transcripts and, in some cases, are responsible for the induction of plant diseases. Currently it remains unclear whether viRNAs are also capable of modulating the expression of cellular genes in the animal kingdom, although animal virus-encoded microRNAs (miRNAs) are known to guide efficient silencing of host genes, thereby facilitating virus replication. In this report, we showed that viRNAs derived from a modified nodavirus triggered potent silencing of homologous cellular transcripts produced by the endogenous gene or transgene in the nematode worm Caenorhabditis elegans. Like that found in plants, virus-induced gene silencing (VIGS) in C. elegans also involves RRF-1, a worm RNA-dependent RNA polymerase (RdRP) that is known to produce single-stranded secondary siRNAs in a Dicer-independent manner. We further demonstrated that VIGS in C. elegans is inheritable, suggesting that VIGS has the potential to generate profound epigenetic consequences in future generations. Altogether, these findings, for the first time, confirmed that viRNAs have the potential to modulate host gene expression in the animal kingdom. Most importantly, the success in uncoupling the trigger and the target of the antiviral silencing would allow for the exploration of novel features of virus-host interactions mediated by viRNAs in the animal kingdom.


Subject(s)
Caenorhabditis elegans/virology , Gene Silencing , Host-Pathogen Interactions , Nodaviridae/pathogenicity , RNA, Small Interfering/metabolism , Animals , Caenorhabditis elegans Proteins/metabolism , Nodaviridae/genetics , RNA-Dependent RNA Polymerase/metabolism
15.
Proc Natl Acad Sci U S A ; 109(10): 3938-43, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22345560

ABSTRACT

A common challenge in pathogen discovery by deep sequencing approaches is to recognize viral or subviral pathogens in samples of diseased tissue that share no significant homology with a known pathogen. Here we report a homology-independent approach for discovering viroids, a distinct class of free circular RNA subviral pathogens that encode no protein and are known to infect plants only. Our approach involves analyzing the sequences of the total small RNAs of the infected plants obtained by deep sequencing with a unique computational algorithm, progressive filtering of overlapping small RNAs (PFOR). Viroid infection triggers production of viroid-derived overlapping siRNAs that cover the entire genome with high densities. PFOR retains viroid-specific siRNAs for genome assembly by progressively eliminating nonoverlapping small RNAs and those that overlap but cannot be assembled into a direct repeat RNA, which is synthesized from circular or multimeric repeated-sequence templates during viroid replication. We show that viroids from the two known families are readily identified and their full-length sequences assembled by PFOR from small RNAs sequenced from infected plants. PFOR analysis of a grapevine library further identified a viroid-like circular RNA 375 nt long that shared no significant sequence homology with known molecules and encoded active hammerhead ribozymes in RNAs of both plus and minus polarities, which presumably self-cleave to release monomer from multimeric replicative intermediates. A potential application of the homology-independent approach for viroid discovery in plant and animal species where RNA replication triggers the biogenesis of siRNAs is discussed.


Subject(s)
Computational Biology/methods , RNA/genetics , Algorithms , High-Throughput Nucleotide Sequencing/methods , Models, Genetic , Nucleic Acid Conformation , Plant Diseases/virology , RNA, Catalytic/chemistry , RNA, Catalytic/genetics , RNA, Circular , RNA, Viral/genetics , Software , Viroids/chemistry , Virus Replication , Vitis/virology
16.
J Virol ; 85(24): 13153-63, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21957285

ABSTRACT

Replication of viral RNA genomes in fruit flies and mosquitoes induces the production of virus-derived small interfering RNAs (siRNAs) to specifically reduce virus accumulation by RNA interference (RNAi). However, it is unknown whether the RNA-based antiviral immunity (RVI) is sufficiently potent to terminate infection in adult insects as occurs in cell culture. We show here that, in contrast to robust infection by Flock house virus (FHV), infection with an FHV mutant (FHVΔB2) unable to express its RNAi suppressor protein B2 was rapidly terminated in adult flies. FHVΔB2 replicated to high levels and induced high mortality rates in dicer-2 and argonaute-2 mutant flies that are RNAi defective, demonstrating that successful infection of adult Drosophila requires a virus-encoded activity to suppress RVI. Drosophila RVI may depend on the RNAi activity of viral siRNAs since efficient FHVΔB2 infection occurred in argonaute-2 and r2d2 mutant flies despite massive production of viral siRNAs. However, RVI appears to be insensitive to the relative abundance of viral siRNAs since FHVΔB2 infection was terminated in flies carrying a partial loss-of-function mutation in loquacious required for viral siRNA biogenesis. Deep sequencing revealed a low-abundance population of Dicer-2-dependent viral siRNAs accompanying FHVΔB2 infection arrest in RVI-competent flies that included an approximately equal ratio of positive and negative strands. Surprisingly, viral small RNAs became strongly biased for positive strands at later stages of infection in RVI-compromised flies due to genetic or viral suppression of RNAi. We propose that degradation of the asymmetrically produced viral positive-strand RNAs associated with abundant virus accumulation contributes to the positive-strand bias of viral small RNAs.


Subject(s)
Drosophila/immunology , Drosophila/virology , Nodaviridae/immunology , RNA Interference , RNA, Small Interfering/immunology , Animals , High-Throughput Nucleotide Sequencing , Nodaviridae/genetics , RNA, Viral/genetics , Sequence Deletion , Survival Analysis
17.
Plant Cell ; 23(4): 1625-38, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21467580

ABSTRACT

Arabidopsis thaliana defense against distinct positive-strand RNA viruses requires production of virus-derived secondary small interfering RNAs (siRNAs) by multiple RNA-dependent RNA polymerases. However, little is known about the biogenesis pathway and effector mechanism of viral secondary siRNAs. Here, we describe a mutant of Cucumber mosaic virus (CMV-Δ2b) that is silenced predominantly by the RNA-DEPENDENT RNA POLYMERASE6 (RDR6)-dependent viral secondary siRNA pathway. We show that production of the viral secondary siRNAs targeting CMV-Δ2b requires SUPPRESSOR OF GENE SILENCING3 and DICER-LIKE4 (DCL4) in addition to RDR6. Examination of 25 single, double, and triple mutants impaired in nine ARGONAUTE (AGO) genes combined with coimmunoprecipitation and deep sequencing identifies an essential function for AGO1 and AGO2 in defense against CMV-Δ2b, which act downstream the biogenesis of viral secondary siRNAs in a nonredundant and cooperative manner. Our findings also illustrate that dicing of the viral RNA precursors of primary and secondary siRNA is insufficient to confer virus resistance. Notably, although DCL2 is able to produce abundant viral secondary siRNAs in the absence of DCL4, the resultant 22-nucleotide viral siRNAs alone do not guide efficient silencing of CMV-Δ2b. Possible mechanisms for the observed qualitative difference in RNA silencing between 21- and 22-nucleotide secondary siRNAs are discussed.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/virology , Cucumovirus/immunology , Nucleotides/genetics , RNA, Small Interfering/genetics , RNA-Binding Proteins/metabolism , Antiviral Agents/immunology , Arabidopsis/genetics , Argonaute Proteins , Gene Silencing , Immunity, Innate/genetics , Immunity, Innate/immunology , Mutation/genetics , Plant Diseases/immunology , Plant Diseases/virology , Protein Binding
18.
Proc Natl Acad Sci U S A ; 107(4): 1606-11, 2010 Jan 26.
Article in English | MEDLINE | ID: mdl-20080648

ABSTRACT

In response to infection, invertebrates process replicating viral RNA genomes into siRNAs of discrete sizes to guide virus clearance by RNA interference. Here, we show that viral siRNAs sequenced from fruit fly, mosquito, and nematode cells were all overlapping in sequence, suggesting a possibility of using siRNAs for viral genome assembly and virus discovery. To test this idea, we examined contigs assembled from published small RNA libraries and discovered five previously undescribed viruses from cultured Drosophila cells and adult mosquitoes, including three with a positive-strand RNA genome and two with a dsRNA genome. Notably, four of the identified viruses exhibited only low sequence similarities to known viruses, such that none could be assigned into an existing virus genus. We also report detection of virus-derived PIWI-interacting RNAs (piRNAs) in Drosophila melanogaster that have not been previously described in any other host species and demonstrate viral genome assembly from viral piRNAs in the absence of viral siRNAs. Thus, this study provides a powerful culture-independent approach for virus discovery in invertebrates by assembling viral genomes directly from host immune response products without prior virus enrichment or amplification. We propose that invertebrate viruses discovered by this approach may include previously undescribed human and vertebrate viral pathogens that are transmitted by arthropod vectors.


Subject(s)
RNA Viruses/genetics , RNA, Small Interfering/genetics , RNA, Viral/genetics , Virus Assembly , Animals , Base Sequence , Caenorhabditis elegans , Cell Line , Culicidae , Drosophila melanogaster , Genome, Viral , Molecular Sequence Data , RNA Viruses/physiology
19.
Proc Natl Acad Sci U S A ; 107(1): 484-9, 2010 Jan 05.
Article in English | MEDLINE | ID: mdl-19966292

ABSTRACT

In diverse eukaryotic organisms, Dicer-processed, virus-derived small interfering RNAs direct antiviral immunity by RNA silencing or RNA interference. Here we show that in addition to core dicing and slicing components of RNAi, the RNAi-mediated viral immunity in Arabidopsis thaliana requires host RNA-directed RNA polymerase (RDR) 1 or RDR6 to produce viral secondary siRNAs following viral RNA replication-triggered biogenesis of primary siRNAs. We found that the two antiviral RDRs exhibited specificity in targeting the tripartite positive-strand RNA genome of cucumber mosaic virus (CMV). RDR1 preferentially amplified the 5'-terminal siRNAs of each of the three viral genomic RNAs, whereas an increased production of siRNAs targeting the 3' half of RNA3 detected in rdr1 mutant plants appeared to be RDR6-dependent. However, siRNAs derived from a single-stranded 336-nucleotide satellite RNA of CMV were not amplified by either antiviral RDR, suggesting avoidance of the potent RDR-dependent silencing as a strategy for the molecular parasite of CMV to achieve preferential replication. Our work thus identifies a distinct mechanism for the amplification of immunity effectors, which together with the requirement for the biogenesis of endogenous siRNAs, may play a role in the emergence and expansion of eukaryotic RDRs.


Subject(s)
Arabidopsis , Immunity/genetics , Plant Diseases , RNA Interference , RNA, Small Interfering/metabolism , RNA, Viral/metabolism , Animals , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/virology , Cucumovirus/genetics , Cucumovirus/metabolism , Gene Expression Profiling , Gene Expression Regulation, Viral , Gene Silencing , Isoenzymes/genetics , Isoenzymes/metabolism , Plant Diseases/genetics , Plant Diseases/virology , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Virus Diseases/genetics , Virus Diseases/virology , Virus Replication/genetics
20.
PLoS Pathog ; 5(2): e1000286, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19197349

ABSTRACT

Dicer ribonucleases of plants and invertebrate animals including Caenorhabditis elegans recognize and process a viral RNA trigger into virus-derived small interfering RNAs (siRNAs) to guide specific viral immunity by Argonaute-dependent RNA interference (RNAi). C. elegans also encodes three Dicer-related helicase (drh) genes closely related to the RIG-I-like RNA helicase receptors which initiate broad-spectrum innate immunity against RNA viruses in mammals. Here we developed a transgenic C. elegans strain that expressed intense green fluorescence from a chromosomally integrated flock house virus replicon only after knockdown or knockout of a gene required for antiviral RNAi. Use of the reporter nematode strain in a feeding RNAi screen identified drh-1 as an essential component of the antiviral RNAi pathway. However, RNAi induced by either exogenous dsRNA or the viral replicon was enhanced in drh-2 mutant nematodes, whereas exogenous RNAi was essentially unaltered in drh-1 mutant nematodes, indicating that exogenous and antiviral RNAi pathways are genetically distinct. Genetic epistatic analysis shows that drh-1 acts downstream of virus sensing and viral siRNA biogenesis to mediate specific antiviral RNAi. Notably, we found that two members of the substantially expanded subfamily of Argonautes specific to C. elegans control parallel antiviral RNAi pathways. These findings demonstrate both conserved and unique strategies of C. elegans in antiviral defense.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/virology , DEAD-box RNA Helicases/physiology , RNA Interference , RNA, Small Interfering/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/immunology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , DEAD-box RNA Helicases/genetics , Epistasis, Genetic , Gene Expression Regulation , Gene Targeting , Genes, Helminth , Microscopy, Fluorescence , Mutation , Nodaviridae/genetics , RNA, Small Interfering/genetics , RNA, Viral/metabolism , Replicon
SELECTION OF CITATIONS
SEARCH DETAIL
...