Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(4)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37420978

ABSTRACT

Suspended graphene film is of great significance for building high-performance electrical devices. However, fabricating large-area suspended graphene film with good mechanical properties is still a challenge, especially for the chemical vapor deposition (CVD)-grown graphene films. In this work, the mechanical properties of suspended CVD-grown graphene film are investigated systematically for the first time. It is found that monolayer graphene film is hard to maintain on circular holes with a diameter of tens of micrometers, which can be improved greatly by increasing the layer of graphene films. The mechanical properties of CVD-grown multilayer graphene films suspended on a circular hole with a diameter of 70 µm can be increased by 20%, and multilayer graphene films prepared by layer-layer stacking process can be increased by up to 400% for the same size. The corresponding mechanism was also discussed in detail, which might pave the way for building high-performance electrical devices based on high-strength suspended graphene film.

2.
Adv Sci (Weinh) ; 10(14): e2300373, 2023 May.
Article in English | MEDLINE | ID: mdl-36935362

ABSTRACT

Amorphous oxide semiconductor thin-film transistors (AOS TFTs) are ever-increasingly utilized in displays. However, to bring high mobility and excellent stability together is a daunting challenge. Here, the carrier transport/relaxation bilayer stacked AOS TFTs are investigated to solve the mobility-stability conflict. The charge transport layer (CTL) is made of amorphous In-rich InSnZnO, which favors big average effective coordination number for all cations and more edge-shared structures for better charge transport. Praseodymium-doped InSnZnO is used as the charge relaxation layer (CRL), which substantially shortens the photoelectron lifetime as revealed by femtosecond transient absorption spectroscopy. The CTL and CRL with the thickness suitable for industrial production respectively afford minute potential barrier fluctuation for charge transport and fast relaxation for photo-generated carriers, resulting in transistors with an ultrahigh mobility (75.5 cm2 V-1 s-1 ) and small negative-bias-illumination-stress/positive-bias-temperature-stress voltage shifts (-1.64/0.76 V). The design concept provides a promising route to address the mobility-stability conflict for high-end displays.

SELECTION OF CITATIONS
SEARCH DETAIL
...