Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38610340

ABSTRACT

In this study, an internal fingerprint-guided epidermal thickness of fingertip skin is proposed for optical image encryption based on optical coherence tomography (OCT) combined with U-Net architecture of a convolutional neural network (CNN). The epidermal thickness of fingertip skin is calculated by the distance between the upper and lower boundaries of the epidermal layer in cross-sectional optical coherence tomography (OCT) images, which is segmented using CNN, and the internal fingerprint at the epidermis-dermis junction (DEJ) is extracted based on the maximum intensity projection (MIP) algorithm. The experimental results indicate that the internal fingerprint-guided epidermal thickness is insensitive to pressure due to normal correlation coefficients and the encryption process between epidermal thickness maps of fingertip skin under different pressures. In addition, the result of the numerical simulation demonstrates the feasibility and security of the encryption scheme by structural similarity index matrix (SSIM) analysis between the original image and the recovered image with the correct and error keys decryption, respectively. The robustness is analyzed based on the SSIM value in three aspects: different pressures, noise attacks, and data loss. Key randomness is valid by the gray histograms, and the average correlation coefficients of adjacent pixelated values in three directions and the average entropy were calculated. This study suggests that the epidermal thickness of fingertip skin could be seen as important biometric information for information encryption.


Subject(s)
Epidermis , Fingers , Cross-Sectional Studies , Epidermis/diagnostic imaging , Fingers/diagnostic imaging , Algorithms , Biometry
2.
J Biophotonics ; 16(9): e202300093, 2023 09.
Article in English | MEDLINE | ID: mdl-37269135

ABSTRACT

In this paper, a polarization-sensitive optical coherence tomography (PS-OCT) based polarization coherency matrix tomography (PCMT) combining polarization coherency matrix with Mueller matrix is proposed for the determination of complete polarization properties of tissue. PCMT measures the Jones matrix of biological sample based on similar transformation, in which four elements have initial random phase from different polarization states based on traditional PS-OCT. The results indicate that PCMT can eliminate the phase difference of incident lights with different polarization states. In addition, the polarization coherency matrix using three polarization states has complete information of the sample Jones matrix. Finally, the 16 elements of the sample Mueller matrix are applied for deriving fully polarized optical properties of the sample based on the elliptical diattenuator and the elliptical retarder. Thus, the method based on the PCM and Mueller matrix has the advantage over the traditional PS-OCT.


Subject(s)
Tomography, Optical Coherence , Tomography, Optical Coherence/methods
3.
J Biophotonics ; 15(10): e202200098, 2022 10.
Article in English | MEDLINE | ID: mdl-35701385

ABSTRACT

In this study, an automatic algorithm combining an ellipsoid approximation and U-net has been presented for the characterization of a zebrafish's yolk sac. The polarization-difference-balanced-detection image of zebrafish was obtained based on orthogonal-polarization-gating optical coherence tomography and used to segment the yolk sac region. And ellipsoid can approximate the shape of the three-dimensional yolk sac, and the multiple parameters of volume and the three principal axes (k, l and m) can be used to quantify the yolk sac. In addition, the multiple parameters of two principal axes (l and m) and volume can distinguish the malformation from the normal controlled group. Finally, the volume malformation of the yolk sac calculated by the proposed algorithm ranges from 16.55% to 46.05%. Thus, the degree of malformation can be applied for toxicity analysis. And this method provides a potential application for an accurate judgment index for biotoxicological testing.


Subject(s)
Yolk Sac , Zebrafish , Animals , Tomography, Optical Coherence , Yolk Sac/anatomy & histology , Yolk Sac/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...