Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38792750

ABSTRACT

Bacillus velezensis is well known as a plant growth-promoting rhizobacteria (PGPR) and biocontrol agent. Nevertheless, there are very few reports on the study of B. velezensis on tomato early blight, especially the biocontrol effects among different inoculation concentrations. In this study, an IAA-producing strain, Bacillus velezensis YXDHD1-7 was isolated from the tomato rhizosphere soil, which had the strongest inhibitory effect against Alternaria solani. Inoculation with bacterial suspensions of this strain promoted the growth of tomato seedlings effectively. Furthermore, inoculations at 106, 107, and 108 cfu/mL resulted in control efficacies of 100%, 83.15%, and 69.90%, respectively. Genome sequencing showed that it possesses 22 gene clusters associated with the synthesis of antimicrobial metabolites and genes that are involved in the production of IAA. Furthermore, it may be able to produce spermidine and volatile compounds that also enhance plant growth and defense responses. Our results suggest that strain YXDHD1-7 prevents early blight disease by promoting growth and enhancing the defense enzyme activities in tomato plants. This strain is a promising candidate for an excellent microbial inoculant that can be used to enhance tomato production.

2.
J Agric Food Chem ; 71(50): 20092-20104, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38051256

ABSTRACT

Tomato cultivars with contrasting resistance to pathogens regulate root exudates differentially in response to Ralstonia solanacearum attacks. However, strategies using innate root exudates against infection remain unknown. This study analyzed the innate root exudates of two tomato cultivars and their functions in regulating R. solanacearum infection. The innate root exudates differed between the two cultivars. Astaxanthin released from resistant plants inhibited colonization by R. solanacearum but promoted motility, while neferine released from susceptible plants suppressed motility and colonization. The secretion of astaxanthin in resistant tomatoes promoted the growth of biocontrol fungi in soil and reduced the abundance of pathogenic fungi. Neferine secreted by the susceptible cultivar inhibited the relative abundance of the bacterial-biocontrol-related Bacillus genus, indirectly reducing the soil's immune capacity. This study revealed contrasting strategies using root exudates in resistant and susceptible tomato cultivars to cope with R. solanacearum infection, providing a basis for breeding disease-resistant cultivars.


Subject(s)
Ralstonia solanacearum , Solanum lycopersicum , Coping Skills , Plant Breeding , Soil , Plant Diseases/microbiology
3.
Genes (Basel) ; 14(2)2023 02 02.
Article in English | MEDLINE | ID: mdl-36833318

ABSTRACT

Paenibacillus mucilaginosus has widely been reported as a plant growth-promoting rhizobacteria (PGPR). However, the important genomic insights into plant growth promotion in this species remain undescribed. In this study, the genome of P. mucilaginosus G78 was sequenced using Illumina NovaSeq PE150. It contains 8,576,872 bp with a GC content of 58.5%, and was taxonomically characterized. Additionally, a total of 7337 genes with 143 tRNAs, 41 rRNAs, and 5 ncRNAs were identified. This strain can prohibit the growth of the plant pathogen, but also has the capability to form biofilm, solubilize phosphate, and produce IAA. Twenty-six gene clusters encoding secondary metabolites were identified, and the genotypic characterization indirectly proved its resistant ability to ampicillin, bacitracin, polymyxin and chloramphenicol. The putative exopolysaccharide biosynthesis and biofilm formation gene clusters were explored. According to the genetic features, the potential monosaccharides of its exopolysaccharides for P. mucilaginosus G78 may include glucose, mannose, galactose, fucose, that can probably be acetylated and pyruvated. Conservation of the pelADEFG compared with other 40 Paenibacillus species suggests that Pel may be specific biofilm matrix component in P. mucilaginosus. Several genes relevant to plant growth-promoting traits, i.e., IAA production and phosphate solubilization are well conserved compared with other 40 other Paenibacillus strains. The current study can benefit for understanding the plant growth-promoting traits of P. mucilaginosus as well as its potential application in agriculture as PGPR.


Subject(s)
Paenibacillus , Paenibacillus/genetics , Plant Development , Genomics , Phosphates
SELECTION OF CITATIONS
SEARCH DETAIL
...