Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 327(2): 426-32, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18786676

ABSTRACT

Monolayer behavior of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with normal long-chain alcohols at the air/water interface was analyzed by the Langmuir trough technique with the Brewster angle microscope (BAM) observations, and the pronounced stability enhancement of a HTMA-DS monolayer with the presence of the alcohol additives was demonstrated. Two normal long-chain alcohols with alkyl chain lengths of C16 and C18, 1-hexadecanol (HD) and 1-octadecanol (OD), were chosen as the additives. The surface pressure-area and surface potential-area isotherms of the monolayers with BAM images of monolayer morphology implied that the addition of either HD or OD with a comparatively small head group in a double-chained HTMA-DS monolayer at the interface led to better molecular packing and attractive interaction between the molecules, showing a similar condensing effect as that observed in mixed phospholipid/cholesterol systems. Moreover, the monolayer hysteresis and relaxation curves indicated that the incorporation of the alcohols into a HTMA-DS monolayer was able to lessen the monolayer hysteresis and to enhance the monolayer stability. In comparison with OD, HD seemed more effective as an additive in stabilizing a HTMA-DS monolayer, most likely due to the relatively better molecular packing of HTMA-DS and HD molecules at the interface. It is inferred that the stability of a monolayer or vesicular bilayer structure composed of IPAs can be improved by adjusting the molecular packing/interaction with a suitable long-chain alcohol as the additive.

2.
Colloids Surf B Biointerfaces ; 66(2): 187-94, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18667294

ABSTRACT

The spread or Langmuir monolayer behavior of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with a double-tailed cationic surfactant, dihexadecyldimethylammonium bromide (DHDAB), at the air/water interface was analyzed with surface pressure-area isotherms, area relaxation curves, and Brewster angle microscope (BAM) images. The surface pressure-area isotherms showed that with increasing the DHDAB molar ratio, X(DHDAB), spread monolayers of HTMA-DS with DHDAB became rigid. In addition, unreasonably small limiting areas per alkyl chain of the molecules in the monolayers were found, especially at X(DHDAB)=0.5, implying the molecular loss from the monolayers at the interface. For spread HTMA-DS/DHDAB monolayers at the interface, a new IPA, DHDA-DS, was proposed to form through the displacement of HTMA(+) from HTMA-DS by DHDA(+), leaving HTMA(+) dissociated. The formation of DHDA-DS and the desorption of dissociated HTMA(+) upon the interface compression were supported by the results obtained from designed monolayer experiments with BAM observations, and were discussed by considering the hydrophilicity, packing efficiency, and headgroup charge characteristic of the species. Moreover, the area relaxation curves of spread HTMA-DS/DHDAB monolayers suggested that the formation of DHDA-DS was strongly related to the improved monolayer stability at the interface, which may have implications for the DHDAB-enhanced physical stability of catanionic vesicles composed of HTMA-DS.


Subject(s)
Cetrimonium Compounds/chemistry , Membranes, Artificial , Quaternary Ammonium Compounds/chemistry , Sodium Dodecyl Sulfate/chemistry , Surface-Active Agents/chemistry , Cetrimonium , Ions/chemistry , Particle Size , Surface Properties , Time Factors , Water/chemistry , Wettability
3.
J Colloid Interface Sci ; 321(2): 384-92, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18321524

ABSTRACT

The phase behavior and morphological characteristics of monolayers composed of equimolar mixed cationic-anionic surfactants at the air/water interface were investigated by measurements of surface pressure-area per alkyl chain (pi-A) and surface potential-area per alkyl chain (DeltaV-A) isotherms with Brewster angle microscope (BAM) observations. Cationic single-alkyl ammonium bromides and anionic sodium single-alkyl sulfates with alkyl chain length ranging from C(12) to C(16) were used to form mixed surfactant monolayers on the water subphase at 21 degrees C by a co-spreading approach. The results demonstrated that when the monolayers were at states with larger areas per alkyl chain during the monolayer compression process, the DeltaV-A isotherms were generally more sensitive than the pi-A isotherms to the molecular orientation variations. For the mixed monolayer components with longer alkyl chains, a close-packed monolayer with condensed monolayer characteristics resulted apparently due to the stronger dispersion interaction between the molecules. BAM images also revealed that with the increase in the alkyl chain length of the surfactants in the mixed monolayers, the condensed/collapse phase formation of the monolayers during the interface compression stage became pronounced. In addition, the variations in the condensed monolayer morphology of the equimolar mixed cationic-anionic surfactants were closely related to the alkyl chain lengths of the components.

SELECTION OF CITATIONS
SEARCH DETAIL
...